1,774
Views
54
CrossRef citations to date
0
Altmetric
Review Article

Photocatalytic degradation of ciprofloxacin in aqueous media: a short review

, &
Pages 518-539 | Received 18 Jun 2018, Accepted 01 Nov 2018, Published online: 11 Jan 2019

References

  • An, T., H. Yang, G. Li, W. Song, W. J. Cooper, and X. Nie. 2010. “Kinetics and Mechanism of Advanced Oxidation Processes (AOPs) in Degradation of Ciprofloxacin in Water.” Applied Catalysis B: Environmental 94(3–4): 288–94. doi:10.1016/j.apcatb.2009.12.002.
  • Ao, Y., J. Bao, P. Wang, C. Wang, and J. Hou. 2016. “Bismuth Oxychloride Modified Titanium Phosphate Nanoplates: A New PN Type Heterostructured Photocatalyst with High Activity for the Degradation of Different Kinds of Organic Pollutants.” Journal of Colloid and Interface Science 476: 71–8. doi:10.1016/j.jcis.2016.05.021.
  • Aristilde, L., A. Melis, and G. Sposito. 2010. “Inhibition of Photosynthesis by a Fluoroquinolone Antibiotic.” Environmental Science & Technology 44(4): 1444–50. doi:10.1021/es902665n.
  • Bajpai, S. K., and M. Bhowmik. 2010. “Poly (Acrylamide-Co-Itaconic Acid) as a Potential Ion-Exchange Sorbent for Effective Removal of Antibiotic Drug-Ciprofloxacin from Aqueous Solution.” Journal of Macromolecular Science, Part A 48(2): 108–18. doi:10.1080/10601325.2011.534718.
  • Bajpai, S. K., M. Bajpai, and N. Rai. 2012. “Sorptive Removal of Ciprofloxacin Hydrochloride from Simulated Wastewater Using Sawdust: Kinetic Study and Effect of pH.” Water SA 38(5): 673–82.
  • Bhanvase, B. A., T. P. Shende, and S. H. Sonawane. 2017. “A Review on Graphene–TiO2 and Doped Graphene–TiO2 Nanocomposite Photocatalyst for Water and Wastewater Treatment.” Environmental Technology Reviews 6(1): 1–14. doi:10.1080/21622515.2016.1264489.
  • Bojer, C., J. Schöbel, T. Martin, M. Ertl, H. Schmalz, and J. Breu. 2017. “Clinical Wastewater Treatment: Photochemical Removal of an Anionic Antibiotic (Ciprofloxacin) by Mesostructured High Aspect Ratio ZnO Nanotubes.” Applied Catalysis B: Environmental 204: 561–5. doi:10.1016/j.apcatb.2016.12.003.
  • Bojer, C., J. Schöbel, T. Martin, T. Lunkenbein, D. R. Wagner, A. Greiner, J. Breu, and H. Schmalz. 2017. “Mesostructured ZnO/Au Nanoparticle Composites with Enhanced Photocatalytic Activity.” Polymer 128: 65–70. doi:10.1016/j.polymer.2017.09.008.
  • Cao, L., Z. Guo, J. Huang, C. Li, J. Fei, Q. Feng, P. Wen, Y. Sun, and X. Kong. 2014. “Topotactic Soft Chemical Synthesis and Photocatalytic Performance of One-Dimensional AgNbO3 Nanostructures.” Materials Letters 137: 110–2. doi:10.1016/j.matlet.2014.08.150.
  • Chen, F., Q. Yang, Y. Wang, F. Yao, Y. Ma, X. Huang, X. Li, D. Wang, G. Zeng, and H. Yu. 2018. “Efficient Construction of Bismuth Vanadate-Based Z-Scheme Photocatalyst for Simultaneous Cr (VI) Reduction and Ciprofloxacin Oxidation under Visible Light: Kinetics, Degradation Pathways and Mechanism.” Chemical Engineering Journal 348: 157–70. doi:10.1016/j.cej.2018.04.170.
  • Chen, J., J. Xia, J. Di, M. Ji, H. Li, H. Xu, Q. Zhang, and J. Lu. 2016. “Reactable Ionic Liquid Assisted Synthesis of BiPO4 and the Influences of Solvent on Structure, Morphology and Photocatalytic Performance.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 488: 110–7. doi:10.1016/j.colsurfa.2015.09.061.
  • Chong, M. N., B. Jin, C. W. K. Chow, and C. Saint. 2010. “Recent Developments in Photocatalytic Water Treatment Technology: A Review.” Water Research 44(10): 2997–3027. doi:10.1016/j.watres.2010.02.039.
  • Dai, G., S. Liu, Y. Liang, and K. Liu. 2014. “Fabrication of a Nano-Sized Ag2CO3/Reduced Graphene Oxide Photocatalyst with Enhanced Visible-Light Photocatalytic Activity and Stability.” RSC Advances 4(65): 34226–31. doi:10.1039/C4RA04792C.
  • Das, R. K., J. P. Kar, and S. Mohapatra. 2016. “Enhanced Photodegradation of Organic Pollutants by Carbon Quantum Dot (CQD) Deposited Fe3O4@mTiO2 Nano-Pom-Pom Balls.” Industrial & Engineering Chemistry Research 55(20): 5902–10. doi:10.1021/acs.iecr.6b00792.
  • De, G., M. S. Vieno, N. M. K. Kujawa-Roeleveld, G. Zeeman, H. Temmink, and C. J. N. Buisman. 2011. “Fate of Hormones and Pharmaceuticals during Combined Anaerobic Treatment and Nitrogen Removal by Partial Nitritation-Anammox in Vacuum Collected Black Water.” Water Research 45(1): 375–83. doi:10.1016/j.watres.2010.08.023.
  • Deng, Y., L. Tang, C. Feng, G. Zeng, J. Wang, Y. Zhou, Y. Liu, B. Peng, and H. Feng. 2018. “Construction of Plasmonic Ag Modified Phosphorous-Doped Ultrathin g-C3N4 Nanosheets/BiVO4 Photocatalyst with Enhanced Visible-Near-Infrared Response Ability for Ciprofloxacin Degradation.” Journal of Hazardous Materials 344: 758–69. doi:10.1016/j.jhazmat.2017.11.027.
  • Di, J., J. Xia, Y. Ge, H. Li, H. Ji, H. Xu, Q. Zhang, H. Li, and M. Li. 2015. “Novel Visible-Light-Driven CQDs/Bi2WO6 Hybrid Materials with Enhanced Photocatalytic Activity toward Organic Pollutants Degradation and Mechanism Insight.” Applied Catalysis B: Environmental 168: 51–61. doi:10.1016/j.apcatb.2014.11.057.
  • Di, J., J. Xia, M. Ji, B. Wang, X. Li, Q. Zhang, Z. Chen, and H. Li. 2015. “Nitrogen-Doped Carbon Quantum Dots/BiOBr Ultrathin Nanosheets: In Situ Strong Coupling and Improved Molecular Oxygen Activation Ability under Visible Light Irradiation.” ACS Sustainable Chemistry & Engineering 4(1): 136–46. doi:10.1021/acssuschemeng.5b00862.
  • Di, J., J. Xia, M. Ji, B. Wang, S. Yin, Y. Huang, Z. Chen, and H. Li. 2016. “New Insight of Ag Quantum Dots with the Improved Molecular Oxygen Activation Ability for Photocatalytic Applications.” Applied Catalysis B: Environmental 188: 376–87. doi:10.1016/j.apcatb.2016.01.062.
  • Di, J., J. Xia, M. Ji, B. Wang, S. Yin, Q. Zhang, Z. Chen, and H. Li. 2016. “Advanced Photocatalytic Performance of Graphene-Like BN Modified BiOBr Flower-Like Materials for the Removal of Pollutants and Mechanism Insight.” Applied Catalysis B: Environmental 183: 254–62. doi:10.1016/j.apcatb.2015.10.036.
  • Ding, J., Z. Dai, F. Qin, H. Zhao, S. Zhao, and R. Chen. 2017. “Z-Scheme BiO1-xBr/Bi2O2CO3 Photocatalyst with Rich Oxygen Vacancy as Electron Mediator for Highly Efficient Degradation of Antibiotics.” Applied Catalysis B: Environmental 205: 281–91. doi:10.1016/j.apcatb.2016.12.018.
  • Dong, C., K. L. Wu, X. W. Wei, J. Wang, L. Liu, and B. B. Jiang. 2014. “Nitrogen-Doped Graphene Modified AgX@Ag (X = Br, Cl) Composites with Improved Visible Light Photocatalytic Activity and Stability.” Applied Catalysis A: General 488: 11–8. doi:10.1016/j.apcata.2014.09.025.
  • Durán-Álvarez, J. C., E. Avella, R. M. Ramírez-Zamora, and R. Zanella. 2016. “Photocatalytic Degradation of Ciprofloxacin Using Mono-(Au, Ag and Cu) and bi-(Au–Ag and Au–Cu) metallic Nanoparticles Supported on TiO2 under UV-C and Simulated Sunlight.” Catalysis Today 266: 175–87. doi:10.1016/j.cattod.2015.07.033.
  • El-Kemary, M., H. El-Shamy, and I. El-Mehasseb. 2010. “Photocatalytic Degradation of Ciprofloxacin Drug in Water Using ZnO Nanoparticles.” Journal of Luminescence 130(12): 2327–31. doi:10.1016/j.jlumin.2010.07.013.
  • Eskandari, M., N. Goudarzi, and S. G. Moussavi. 2018. “Application of Low‐Voltage UVC Light and Synthetic ZnO Nanoparticles to Photocatalytic Degradation of Ciprofloxacin in Aqueous Sample Solutions.” Water and Environment Journal 32(1): 58–66. doi:10.1111/wej.12291.
  • Fei, Y., Y. Li, S. Han, and J. Ma. 2016. “Adsorptive Removal of Ciprofloxacin by Sodium Alginate/Graphene Oxide Composite Beads from Aqueous Solution.” Journal of Colloid and Interface Science 484: 196–204. doi:10.1016/j.jcis.2016.08.068.
  • Fick, J., H. Söderström, R. H. Lindberg, C. Phan, M. Tysklind, and D. G. Larsson. 2009. “Contamination of Surface, Ground, and Drinking Water from Pharmaceutical Production.” Environmental Toxicology and Chemistry 28(12): 2522–7. doi:10.1897/09-073.1.
  • Gad-Allah, T. A., M. E. M. Ali, and M. I. Badawy. 2011. “Photocatalytic Oxidation of Ciprofloxacin under Simulated Sunlight.” Journal of Hazardous Materials 186(1): 751–5. doi:10.1016/j.jhazmat.2010.11.066.
  • Githinji, L. J. M., M. K. Musey, and R. O. Ankumah. 2011. “Evaluation of the Fate of Ciprofloxacin and Amoxicillin in Domestic Wastewater.” Water, Air, & Soil Pollution 219(1–4): 191–201. doi:10.1007/s11270-010-0697-1.
  • Gonzalez-Martinez, A., A. Rodriguez-Sanchez, M. V. Martinez-Toledo, M. J. Garcia-Ruiz, E. Hontoria, F. Osorio-Robles, and J. Gonzalez–Lopez. 2014. “Effect of Ciprofloxacin Antibiotic on the Partial-Nitritation Process and Bacterial Community Structure of a Submerged Biofilter.” Science of the Total Environment 476: 276–87. doi:10.1016/j.scitotenv.2014.01.012.
  • Gu, C., and K. G. Karthikeyan. 2005. “Sorption of the Antimicrobial Ciprofloxacin to Aluminum and Iron Hydrous Oxides.” Environmental Science & Technology 39(23): 9166–73. doi:10.1021/es051109f.
  • Hanaor, D. A. H., and C. C. Sorrell. 2011. “Review of the Anatase to Rutile Phase Transformation.” Journal of Materials Science 46(4): 855–74. doi:10.1007/s10853-010-5113-0.
  • Hassani, A., A. Khataee, and S. Karaca. 2015. “Photocatalytic Degradation of Ciprofloxacin by Synthesized TiO2 Nanoparticles on Montmorillonite: Effect of Operation Parameters and Artificial Neural Network Modeling.” Journal of Molecular Catalysis A: Chemical 409: 149–61. doi:10.1016/j.molcata.2015.08.020.
  • Hassani, A., A. Khataee, S. Karaca, and M. Fathinia. 2016. “Heterogeneous Photocatalytic Ozonation of Ciprofloxacin Using Synthesized Titanium Dioxide Nanoparticles on a Montmorillonite Support: Parametric Studies, Mechanistic Analysis and Intermediates Identification.” RSC Advances 6(90): 87569–83. doi:10.1039/C6RA19191F.
  • Hernández-Alonso, M. D., F. Fresno, S. Suárez, and J. M. Coronado. 2009. “Development of Alternative Photocatalysts to TiO2: Challenges and Opportunities.” Energy & Environmental Science 2(12): 1231–57. doi:10.1039/b907933e.
  • Hernández-Uresti, D. B., A. Martínez-de la Cruz, and L. M. Torres-Martínez. 2016. “Photocatalytic Degradation of Organic Compounds by PbMoO4 Synthesized by a Microwave-Assisted Solvothermal Method.” Ceramics International 42(2): 3096–103. doi:10.1016/j.ceramint.2015.10.098.
  • Herrmann, J. M., C. Duchamp, M. Karkmaz, B. T. Hoai, H. Lachheb, E. Puzenat, and C. Guillard. 2007. “Environmental Green Chemistry as Defined by Photocatalysis.” Journal of Hazardous Materials 146(3): 624–9. doi:10.1016/j.jhazmat.2007.04.095.
  • Hu, X., and C. Hu. 2007. “Preparation and Visible-Light Photocatalytic Activity of Ag3VO4 Powders.” Journal of Solid State Chemistry 180(2): 725–32. doi:10.1016/j.jssc.2006.11.032.
  • Huo, P., C. Liu, D. Wu, J. Guan, J. Li, H. Wang, Q. Tang, X. Li, Y. Yan, and S. Yuan. 2018. “Fabricated Ag/Ag2S/Reduced Graphene Oxide Composite Photocatalysts for Enhancing Visible Light Photocatalytic and Antibacterial Activity.” Journal of Industrial and Engineering Chemistry 57: 125–33. doi:10.1016/j.jiec.2017.08.015.
  • Huo, P., Z. Lu, X. Liu, X. Liu, X. Gao, J. Pan, D. Wu, J. Ying, H. Li, and Y. Yan. 2012. “Preparation Molecular/Ions Imprinted Photocatalysts of La3+@POPD/TiO2/Fly-Ash Cenospheres: Preferential Photodegradation of TCs Antibiotics.” Chemical Engineering Journal 198: 73–80. doi:10.1016/j.cej.2012.05.089.
  • Huo, P., Z. Lu, X. Liu, D. Wu, X. Liu, J. Pan, X. Gao, W. Guo, H. Li, and Y. Yan. 2012. “Preparation Photocatalyst of Selected Photodegradation Antibiotics by Molecular Imprinting Technology onto TiO2/Fly-Ash Cenospheres.” Chemical Engineering Journal 189: 75–83. doi:10.1016/j.cej.2012.02.030.
  • Huo, P., M. Zhou, Y. Tang, X. Liu, C. Ma, L. Yu, and Y. Yan. 2016. “Incorporation of N–ZnO/CdS/Graphene Oxide Composite Photocatalyst for Enhanced Photocatalytic Activity under Visible Light.” Journal of Alloys and Compounds 670: 198–209. doi:10.1016/j.jallcom.2016.01.247.
  • Imam, S. S., R. Adnan, and N. H. M. Kaus. 2018. “Influence of Yttrium Doping on the Photocatalytic Activity of Bismuth Oxybromide for Ciprofloxacin Degradation Using Indoor Fluorescent Light Illumination.” Research on Chemical Intermediates 44(9): 5357–76. doi:10.1007/s11164-018-3427-8.
  • Ji, M., J. Di, Y. Ge, J. Xia, and H. Li. 2017. “2D-2D Stacking of Graphene-Like g-C3N4/Ultrathin Bi4O5Br2 with Matched Energy Band Structure towards Antibiotic Removal.” Applied Surface Science 413: 372–80. doi:10.1016/j.apsusc.2017.03.287.
  • Jiang, J. Q., Z. Zhou, and O. Pahl. 2012. “Preliminary Study of Ciprofloxacin (CIP) Removal by Potassium Ferrate (VI).” Separation and Purification Technology 88: 95–8. doi:10.1016/j.seppur.2011.12.021.
  • Kadam, A., R. Dhabbe, A. Gophane, T. Sathe, and K. Garadkar. 2016. “Template Free Synthesis of ZnO/Ag2O Nanocomposites as a Highly Efficient Visible Active Photocatalyst for Detoxification of Methyl Orange.” Journal of Photochemistry and Photobiology B: Biology 154: 24–33. doi:10.1016/j.jphotobiol.2015.11.007.
  • Kandavelu, V., H. Kastien, and K. R. Thampi. 2004. “Photocatalytic Degradation of Isothiazolin-3-Ones in Water and Emulsion Paints Containing Nanocrystalline TiO2 and ZnO Catalysts.” Applied Catalysis B: Environmental 48(2): 101–11. doi:10.1016/j.apcatb.2003.09.022.
  • Kaplan, R., B. Erjavec, G. Dražić, J. Grdadolnik, and A. Pintar. 2016. “Simple Synthesis of Anatase/Rutile/Brookite TiO2 Nanocomposite with Superior Mineralization Potential for Photocatalytic Degradation of Water Pollutants.” Applied Catalysis B: Environmental 181: 465–74. doi:10.1016/j.apcatb.2015.08.027.
  • Kumar, J. V., R. K. Chen, S. M. V. Muthuraj, and C. Karuppiah. 2016. “Fabrication of Potato-Like Silver Molybdate Microstructures for Photocatalytic Degradation of Chronic Toxicity Ciprofloxacin and Highly Selective Electrochemical Detection of H2O2.” Scientific Reports 6: 34149.
  • Lalitha, K., J. K. Reddy, M. V. P. Sharma, V. D. Kumari, and M. Subrahmanyam. 2010. “Continuous Hydrogen Production Activity over Finely Dispersed Ag2O/TiO2 Catalysts from Methanol: Water Mixtures under Solar Irradiation: A Structure–Activity Correlation.” International Journal of Hydrogen Energy 35(9): 3991–4001. doi:10.1016/j.ijhydene.2010.01.106.
  • Lee, H. B., T. E. Peart, and M. L. Svoboda. 2007. “Determination of Ofloxacin, Norfloxacin, and Ciprofloxacin in Sewage by Selective Solid-Phase Extraction, Liquid Chromatography with Fluorescence Detection, and Liquid Chromatography–Tandem Mass Spectrometry.” Journal of Chromatography A 1139(1): 45–52. doi:10.1016/j.chroma.2006.11.068.
  • Lee, K. M., C. W. Lai, K. S. Ngai, and J. C. Juan. 2016. “Recent Developments of Zinc Oxide Based Photocatalyst in Water Treatment Technology: A Review.” Water Research 88: 428–48. doi:10.1016/j.watres.2015.09.045.
  • Li, C., Z. Sun, W. Zhang, C. Yu, and S. Zheng. 2018. “Highly Efficient g-C3N4/TiO2/Kaolinite Composite with Novel Three-Dimensional Structure and Enhanced Visible Light Responding Ability towards Ciprofloxacin and S. aureus.” Applied Catalysis B: Environmental 220: 272–82. doi:10.1016/j.apcatb.2017.08.044.
  • Li, J., S. K. Cushing, J. Bright, F. Meng, T. R. Senty, P. Zheng, A. D. Bristow, and N. Wu. 2012a. “Ag@Cu2O Core-Shell Nanoparticles as Visible-Light Plasmonic Photocatalysts.” ACS Catalysis 3(1): 47–51. doi:10.1021/cs300672f.
  • Li, M., D. Wei, H. Zhao, and Y. Du. 2014. “Genotoxicity of Quinolones: Substituents Contribution and Transformation Products QSAR Evaluation Using 2D and 3D Models.” Chemosphere 95: 220–6. doi:10.1016/j.chemosphere.2013.09.002.
  • Li, N., J. Zhang, Y. Tian, J. Zhao, J. Zhang, and W. Zuo. 2017. “Precisely Controlled Fabrication of Magnetic 3D γ-Fe2O3@ZnO Core-Shell Photocatalyst with Enhanced Activity: Ciprofloxacin Degradation and Mechanism Insight.” Chemical Engineering Journal 308: 377–85. doi:10.1016/j.cej.2016.09.093.
  • Li, W., C. Guo, B. Su, and J. Xu. 2012b. “Photodegradation of Four Fluoroquinolone Compounds by Titanium Dioxide under Simulated Solar Light Irradiation.” Journal of Chemical Technology & Biotechnology 87(5): 643–50. doi:10.1002/jctb.2759.
  • Li, X., S. Ouyang, N. Kikugawa, and J. Ye. 2008. “Novel Ag2ZnGeO4 Photocatalyst for Dye Degradation under Visible Light Irradiation.” Applied Catalysis A: General 334(1–2): 51–8. doi:10.1016/j.apcata.2007.09.033.
  • Linsebigler, A. L., G. Lu, and J. T. Yates. Jr. 1995. “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results.” Chemical Reviews 95(3): 735–58. doi:10.1021/cr00035a013.
  • Liu, C., V. Nanaboina, G. V. Korshin, and W. Jiang. 2012. “Spectroscopic Study of Degradation Products of Ciprofloxacin, Norfloxacin and Lomefloxacin Formed in Ozonated Wastewater.” Water Research 46(16): 5235. doi:10.1016/j.watres.2012.07.005.
  • Liu, H., C. Du, H. Bai, Y. Su, D. Wei, Y. Wang, G. Liu, and L. Yang. 2018. “Fabrication of Plate-on-Plate Z-Scheme SnS2/Bi2MoO6 Heterojunction Photocatalysts with Enhanced Photocatalytic Activity.” Journal of Materials Science 53(15): 10743–57. doi:10.1007/s10853-018-2296-2.
  • Liu, W., X. Liu, Y. Fu, Q. You, R. Huang, P. Liu, and Z. Li. 2012. “Nanocrystalline Pyrochlore AgSbO3: Hydrothermal Synthesis, Photocatalytic Activity and Self-Stable Mechanism Study.” Applied Catalysis B: Environmental 123: 78–83. doi:10.1016/j.apcatb.2012.04.033.
  • Liu, X., P. Lv, G. Yao, C. Ma, Y. Tang, Y. Wu, P. Huo, J. Pan, W. Shi, and Y. Yan. 2014. “Selective Degradation of Ciprofloxacin with Modified NaCl/TiO2 Photocatalyst by Surface Molecular Imprinted Technology.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 441: 420–6. doi:10.1016/j.colsurfa.2013.10.005.
  • Liu, Z., P. Sun, S. G. Pavlostathis, X. Zhou, and Y. Zhang. 2013. “Adsorption, Inhibition, and Biotransformation of Ciprofloxacin under Aerobic Conditions.” Bioresource Technology 144: 644–51. doi:10.1016/j.biortech.2013.07.031.
  • Ma, Y., Z. Chen, D. Qu, and J. Shi. 2016. “Synthesis of Chemically Bonded BiOCl@ Bi2WO6 Microspheres with Exposed (020) Bi2WO6 Facets and Their Enhanced Photocatalytic Activities under Visible Light Irradiation.” Applied Surface Science 361: 63–71. doi:10.1016/j.apsusc.2015.11.130.
  • Makama, A. B., A. Salmiaton, E. B. Saion, T. S. Y. Choong, and N. Abdullah. 2015. “Microwave-Assisted Synthesis of Porous ZnO/SnS2 Heterojunction and Its Enhanced Photoactivity for Water Purification.” Journal of Nanomaterials 2015: 1. doi:10.1155/2015/108297.
  • Manaia, C. M., A. Novo, B. Coelho, and O. C. Nunes. 2010. “Ciprofloxacin Resistance in Domestic Wastewater Treatment Plants.” Water, Air, and Soil Pollution 208(1–4): 335–43. doi:10.1007/s11270-009-0171-0.
  • Mao, D., A. Yu, S. Ding, F. Wang, S. Yang, C. Sun, H. He, Y. Liu, and K. Yu. 2016. “One-Pot Synthesis of BiOCl Half-Shells Using Microemulsion Droplets as Templates with Highly Photocatalytic Performance for the Degradation of Ciprofloxacin.” Applied Surface Science 389: 742–50. doi:10.1016/j.apsusc.2016.07.178.
  • Mclaren, A., T. Valdes-Solis, G. Li, and S. C. Tsang. 2009. “Shape and Size Effects of ZnO Nanocrystals on Photocatalytic Activity.” Journal of the American Chemical Society 131(35): 12540–1. doi:10.1021/ja9052703.
  • Meng, X., and Z. Zhang. 2016. “Bismuth-Based Photocatalytic Semiconductors: Introduction, Challenges and Possible Approaches.” Journal of Molecular Catalysis A: Chemical 423: 533–49. doi:10.1016/j.molcata.2016.07.030.
  • Montalvo‐Herrera, T., D. Sánchez‐Martínez, and L. M. Torres‐Martínez. 2017. “Sonochemical Synthesis of CaBi6O10 Nanoplates: Photocatalytic Degradation of Organic Pollutants (Ciprofloxacin and Methylene Blue) and Oxidizing Species Study (h+, OH·, H2O2 and O2•‐).” Journal of Chemical Technology and Biotechnology 92(7): 1496–502.
  • Nekouei, F., and S. Nekouei. 2017. “Comparative Study of Photocatalytic Activities of Zn5(OH)8Cl2·H2O and ZnO Nanostructures in Ciprofloxacin Degradation: Response Surface Methodology and Kinetic Studies.” Science of the Total Environment 601: 508–17. doi:10.1016/j.scitotenv.2017.05.117.
  • Ni, J., J. Xue, J. Shen, G. He, and H. Chen. 2018. “Fabrication of ZnAl Mixed Metal-Oxides/RGO Nanohybrid Composites with Enhanced Photocatalytic Activity under Visible Light.” Applied Surface Science 441: 599–606. doi:10.1016/j.apsusc.2018.02.079.
  • Ni, J., J. Xue, L. Xie, J. Shen, G. He, and H. Chen. 2018. “Construction of Magnetically Separable NiAl LDH/Fe3 O4–RGO Nanocomposites with Enhanced Photocatalytic Performance under Visible Light.” Physical Chemistry Chemical Physics 20(1): 414–21. doi:10.1039/C7CP06682A.
  • Park, S., J. M. Lee, Y. K. Jo, I. Y. Kim, and S. J. Hwang. 2014. “A Facile Exfoliation-Crystal Growth Route to Multicomponent Ag2CO3/Ag-Ti5NbO14 Nanohybrids with Improved Visible Light Photocatalytic Activity.” Dalton Transactions 43(27): 10566–73. doi:10.1039/C4DT00018H.
  • Parsa, J. B., T. M. Panah, and F. N. Chianeh. 2016. “Removal of Ciprofloxacin from Aqueous Solution by a Continuous Flow Electro-Coagulation Process.” Korean Journal of Chemical Engineering 33(3): 893–901. doi:10.1007/s11814-015-0196-6.
  • Paul, T., P. L. Miller, and T. J. Strathmann. 2007. “Visible-Light-Mediated TiO2 Photocatalysis of Fluoroquinolone Antibacterial Agents.” Environmental Science & Technology 41(13): 4720–7. doi:10.1021/es070097q.
  • Perreten, V., F. Schwarz, L. Cresta, M. Boeglin, G. Dasen, and M. Teuber. 1997. “Antibiotic Resistance Spread in Food.” Nature 389(6653): 801
  • Pung, S. Y., W. P. Lee, and A. Aziz. 2012. “Kinetic Study of Organic Dye Degradation Using ZnO Particles with Different Morphologies as a Photocatalyst.” International Journal of Inorganic Chemistry 2012: 1. doi: doi:10.1155/2012/608183. doi:10.1155/2012/608183.
  • Rakshit, S., D. Sarkar, E. J. Elzinga, P. Punamiya, and R. Datta. 2013. “Mechanisms of Ciprofloxacin Removal by Nano-Sized Magnetite.” Journal of Hazardous Materials 246: 221–6. doi:10.1016/j.jhazmat.2012.12.032.
  • Reza, K. M., A. S. W. Kurny, and F. Gulshan. 2017. “Parameters Affecting the Photocatalytic Degradation of Dyes Using TiO2: A Review.” Applied Water Science 7(4): 1569–78. doi:10.1007/s13201-015-0367-y.
  • Rong, X., F. Qiu, Z. Jiang, J. Rong, J. Pan, T. Zhang, and D. Yang. 2016. “Preparation of Ternary Combined ZnO-Ag2O/Porous g-C3N4 Composite Photocatalyst and Enhanced Visible-Light Photocatalytic Activity for Degradation of Ciprofloxacin.” Chemical Engineering Research and Design 111: 253–61. doi:10.1016/j.cherd.2016.05.010.
  • Sakthivel, S., M. V. Shankar, M. Palanichamy, B. Arabindoo, D. W. Bahnemann, and V. Murugesan. 2004. “Enhancement of Photocatalytic Activity by Metal Deposition: Characterisation and Photonic Efficiency of Pt, Au and Pd Deposited on TiO2 Catalyst.” Water Research 38(13): 3001–8. doi:10.1016/j.watres.2004.04.046.
  • Salma, A., S. Thoröe-Boveleth, T. C. Schmidt, and J. Tuerk. 2016. “Dependence of Transformation Product Formation on pH during Photolytic and Photocatalytic Degradation of Ciprofloxacin.” Journal of Hazardous Materials 313: 49–59. doi:10.1016/j.jhazmat.2016.03.010.
  • Sayed, M., A. K. Javed, L. A. Shah, N. S. Shah, F. Shah, H. M. Khan, P. Zhang, and H. Arandiyan. 2018. “Solar Light Responsive Poly (vinyl Alcohol)-Assisted Hydrothermal Synthesis of Immobilized TiO2/Ti Film with the Addition of Peroxymonosulfate for Photocatalytic Degradation of Ciprofloxacin in Aqueous Media: A Mechanistic Approach.” The Journal of Physical Chemistry C 122(1): 406–21. doi:10.1021/acs.jpcc.7b09169.
  • Shetty, R., V. B. Chavan, P. S. Kulkarni, B. D. Kulkarni, and S. P. Kamble. 2017. “Photocatalytic Degradation of Pharmaceuticals Pollutants Using N-doped TiO2 Photocatalyst: Identification of CFX Degradation Intermediates.” Indian Chemical Engineer 59(3): 177–99. doi:10.1080/00194506.2016.1150794.
  • Shetty, R., G. Kothari, A. S. Tambe, B. D. Kulkarni, and S. P. Kamble. 2016. “Photocatalytic Degradation of Ciprofloxacin· HCl Using Aeroxide® P-25 TiO2 Photocatalyst: Comparative Evaluation of Solar and Artificial Radiation.” Indian Journal of Chemistry 55A(1): 16–22.
  • Shi, H., G. Li, H. Sun, T. An, H. Zhao, and P. K. Wong. 2014. “Visible-Light-Driven Photocatalytic Inactivation of E. coli by Ag/AgX-CNTs (X = Cl, Br, I) Plasmonic Photocatalysts: Bacterial Performance and Deactivation Mechanism.” Applied Catalysis B: Environmental 158: 301–7. doi:10.1016/j.apcatb.2014.04.033.
  • Shi, W., Y. Yan, and X. Yan. 2013. “Microwave-Assisted Synthesis of Nano-Scale BiVO4 Photocatalysts and Their Excellent Visible-Light-Driven Photocatalytic Activity for the Degradation of Ciprofloxacin.” Chemical Engineering Journal 215: 740–6. doi:10.1016/j.cej.2012.10.071.
  • Silva, A. R., P. M. Martins, S. Teixeira, S. A. C. Carabineiro, K. Kuehn, G. Cuniberti, M. M. Alves, S. Lanceros-Mendez, and L. Pereira. 2016. “Ciprofloxacin Wastewater Treated by UVA Photocatalysis: Contribution of Irradiated TiO2 and ZnO Nanoparticles on the Final Toxicity as Assessed by Vibrio fischeri.” RSC Advances 6(98): 95494–503. doi:10.1039/C6RA19202E.
  • Singh, S., V. C. Srivastava, S. L. Lo, T. K. Mandal, and G. Naresh. 2017. “Morphology-Controlled Green Approach for Synthesizing the Hierarchical Self-Assembled 3D Porous ZnO Superstructure with Excellent Catalytic Activity.” Microporous and Mesoporous Materials 239: 296–309. doi:10.1016/j.micromeso.2016.10.016.
  • Su, X., and D. Wu. 2018. “Facile Construction of the Phase Junction of BiOBr and Bi4O5Br2 Nanoplates for Ciprofloxacin Photodegradation.” Materials Science in Semiconductor Processing 80: 123–30. doi:10.1016/j.mssp.2018.02.034.
  • Sun, S. P., T. A. Hatton, and T. S. Chung. 2011. “Hyperbranched Polyethyleneimine Induced Cross-Linking of Polyamide − Imide Nanofiltration Hollow Fiber Membranes for Effective Removal of Ciprofloxacin.” Environmental Science & Technology 45(9): 4003–9. doi:10.1021/es200345q.
  • Trivedi, P., and D. Vasudevan. 2007. “Spectroscopic Investigation of Ciprofloxacin Speciation at the Goethite − Water Interface.” Environmental Science & Technology 41(9): 3153–8. doi:10.1021/es061921y.
  • Saqib, N. U., R. Adnan, and I. Shah. 2016. “A Mini-Review on Rare Earth Metal-Doped TiO2 for Photocatalytic Remediation of Wastewater.” Environmental Science and Pollution Research 23(16): 15941–51. doi:10.1007/s11356-016-6984-7.
  • Van Doorslaer, X., K. Demeestere, P. M. Heynderickx, H. V. Langenhove, and J. Dewulf. 2011. “UV-A and UV-C Induced Photolytic and Photocatalytic Degradation of Aqueous Ciprofloxacin and Moxifloxacin: Reaction Kinetics and Role of Adsorption.” Applied Catalysis B: Environmental 101(3–4): 540–7. doi:10.1016/j.apcatb.2010.10.027.
  • Wang, H., J. Li, P. Huo, Y. Yan, and Q. Guan. 2016. “Preparation of Ag2O/Ag2CO3/MWNTs Composite Photocatalysts for Enhancement of Ciprofloxacin Degradation.” Applied Surface Science 366: 1–8. doi:10.1016/j.apsusc.2015.12.229.
  • Wang, H., J. Li, C. Ma, Q. Guan, Z. Lu, P. Huo, and Y. Yan. 2015. “Melamine Modified P25 with Heating Method and Enhanced the Photocatalytic Activity on Degradation of Ciprofloxacin.” Applied Surface Science 329: 17–22. doi:10.1016/j.apsusc.2014.12.049.
  • Wang, K., G. Zhang, J. Li, Y. Li, and X. Wu. 2017. “0D/2D Z-Scheme Heterojunctions of Bismuth Tantalate Quantum Dots/Ultrathin g-C3N4 Nanosheets for Highly Efficient Visible Light Photocatalytic Degradation of Antibiotics.” ACS Applied Materials & Interfaces 9(50): 43704–15. doi:10.1021/acsami.7b14275.
  • Wang, S., X. Yang, X. Zhang, X. Ding, Z. Yang, K. Dai, and H. Chen. 2017. “A Plate-on-Plate Sandwiched Z-Scheme Heterojunction Photocatalyst: BiOBr-Bi2MoO6 with Enhanced Photocatalytic Performance.” Applied Surface Science 391: 194–201. doi:10.1016/j.apsusc.2016.07.070.
  • Wang, X., A. Wang, and J. Ma. 2017. “Visible-Light-Driven Photocatalytic Removal of Antibiotics by Newly Designed C3N4@ MnFe2O4-Graphene Nanocomposites.” Journal of Hazardous Materials 336: 81–92. doi:10.1016/j.jhazmat.2017.04.012.
  • Wang, Y., R. Shi, J. Lin, and Y. Zhu. 2011. “Enhancement of Photocurrent and Photocatalytic Activity of ZnO Hybridized with Graphite-Like C3N4.” Energy & Environmental Science 4(8): 2922–9. doi:10.1039/c0ee00825g.
  • Wen, X. J., C. G. Niu, L. Zhang, C. Liang, H. Guo, and G. M. Zeng. 2018. “Photocatalytic Degradation of Ciprofloxacin by a Novel Z-Scheme CeO2–Ag/AgBr Photocatalyst: Influencing Factors, Possible Degradation Pathways, and Mechanism Insight.” Journal of Catalysis 358: 141–54. doi:10.1016/j.jcat.2017.11.029.
  • Wu, D., P. Huo, Z. Lu, X. Gao, X. Liu, W. Shi, and Y. Yan. 2012. “Preparation of Heteropolyacid/TiO2/Fly-Ash-Cenosphere Photocatalyst for the Degradation of Ciprofloxacin from Aqueous Solutions.” Applied Surface Science 258(18): 7008–15. doi:10.1016/j.apsusc.2012.03.154.
  • Wu, Q., Z. Li, H. Hong, K. Yin, and L. Tie. 2010. “Adsorption and Intercalation of Ciprofloxacin on Montmorillonite.” Applied Clay Science 50(2): 204–11. doi:10.1016/j.clay.2010.08.001.
  • Wu, S., X. Zhao, Y. Li, C. Zhao, Q. Du, J. Sun, Y. Wang, et al., and L. Xia. 2013. “Adsorption of Ciprofloxacin onto Biocomposite Fibers of Graphene Oxide/Calcium Alginate.” Chemical Engineering Journal 230: 389–95. doi:10.1016/j.cej.2013.06.072.
  • Xia, J., M. Ji, W. Li, J. Di, H. Xu, M. He, Q. Zhang, and H. Li. 2016. “Synthesis of Erbium Ions Doped BiOBr via a Reactive Ionic Liquid with Improved Photocatalytic Activity.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 489: 343–50. doi:10.1016/j.colsurfa.2015.10.037.
  • Yan, M., F. Zhu, W. Gu, L. Sun, W. Shi, and Y. Hua. 2016. “Construction of Nitrogen-Doped Graphene Quantum Dots-BiVO4/gC3N4 Z-Scheme Photocatalyst and Enhanced Photocatalytic Degradation of Antibiotics under Visible Light.” RSC Advances 6(66): 61162–74. doi:10.1039/C6RA07589D.
  • Yan, Y., X. Liu, W. Fan, P. Lv, and W. Shi. 2012. “InVO4 Microspheres: Preparation, Characterization and Visible-Light-Driven Photocatalytic Activities.” Chemical Engineering Journal 200: 310–6. doi:10.1016/j.cej.2012.05.102.
  • Yan, Y., S. Sun, Y. Song, X. Yan, W. Guan, X. Liu, and W. Shi. 2013. “Microwave-Assisted in Situ Synthesis of Reduced Graphene Oxide-BiVO4 Composite Photocatalysts and Their Enhanced Photocatalytic Performance for the Degradation of Ciprofloxacin.” Journal of Hazardous Materials 250: 106–14. doi:10.1016/j.jhazmat.2013.01.051.
  • Yang, S., D. Xu, B. Chen, B. Luo, and W. Shi. 2017. “In-Situ Synthesis of a Plasmonic Ag/AgCl/Ag2O Heterostructures for Degradation of Ciprofloxacin.” Applied Catalysis B: Environmental 204: 602–10. doi:10.1016/j.apcatb.2016.10.013.
  • Yi, Z., J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, et al., 2010. “An Orthophosphate Semiconductor with Photooxidation Properties under Visible-Light Irradiation.” Nature Materials 9(7): 559. doi:10.1038/nmat2780.
  • Yin, S., W. Fan, J. Di, T. Wu, J. Yan, M. He, J. Xia, and H. Li. 2017. “La3+ Doped BiOBr Microsphere with Enhanced Visible Light Photocatalytic Activity.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 513: 160–7. doi:10.1016/j.colsurfa.2016.10.012.
  • Yu, H., B. Huang, H. Wang, X. Yuan, L. Jiang, Z. Wu, J. Zhang, and G. Zeng. 2018. “Facile Construction of Novel Direct Solid-State Z-Scheme AgI/BiOBr Photocatalysts for Highly Effective Removal of Ciprofloxacin under Visible Light Exposure: Mineralization Efficiency and Mechanisms.” Journal of Colloid and Interface Science 522: 82–94. doi:10.1016/j.jcis.2018.03.056.
  • Yu, J., Y. Zhou, and H. Xu. 2014. “Microwave Hydrothermal Synthesis and Photodegradation Activities for Ciprofloxacin under Visible Light of InVO4 Nanocrystals.” Materials Research Innovations 18(3): 196–200. doi:10.1179/1433075X13Y.0000000186.
  • Zeng, X., Y. Wan, X. Gong, and Z. Xu. 2017. “Additive Dependent Synthesis of Bismuth Oxybromide Composites for Photocatalytic Removal of the Antibacterial Agent Ciprofloxacin and Mechanism Insight.” RSC Advances 7(58): 36269–78. doi:10.1039/C7RA05213H.
  • Zhang, X. X., R. Li, M. Jia, S. Wang, Y. Huang, and C. Chen. 2015. “Degradation of Ciprofloxacin in Aqueous Bismuth Oxybromide (BiOBr) Suspensions under Visible Light Irradiation: A Direct Hole Oxidation Pathway.” Chemical Engineering Journal 274: 290–7. doi:10.1016/j.cej.2015.03.077.
  • Zhao, S., Y. Zhang, Y. Zhou, C. Zhang, J. Fang, and X. Sheng. 2017. “Ionic Liquid-Assisted Photochemical Synthesis of ZnO/Ag2O Heterostructures with Enhanced Visible Light Photocatalytic Activity.” Applied Surface Science 410: 344–53. doi:10.1016/j.apsusc.2017.03.051.
  • Zhou, M., J. Li, Z. Ye, C. Ma, H. Wang, P. Huo, W. Shi, and Y. Yan. 2015. “Transfer Charge and Energy of Ag@ CdSe QDs-rGO Core–Shell Plasmonic Photocatalyst for Enhanced Visible Light Photocatalytic Activity.” ACS Applied Materials & Interfaces 7(51): 28231–43. doi:10.1021/acsami.5b06997.
  • Zhu, C., T. Gong, Q. Xian, and J. Xie. 2018. “Graphite-Like Carbon Nitride Coupled with Tiny Bi2S3 Nanoparticles as 2D/0D Heterojunction with Enhanced Photocatalytic Activity.” Applied Surface Science 444: 75–86. doi:10.1016/j.apsusc.2018.03.021.
  • Zhu, S. R., Q. Qi, Y. Fang, W. N. Zhao, M. K. Wu, and L. Han. 2017. “Covalent Triazine Framework Modified BiOBr Nanoflake with Enhanced Photocatalytic Activity for Antibiotic Removal.” Crystal Growth & Design 18(2): 883–91. doi:10.1021/acs.cgd.7b01367.
  • Zhu, Y., J. Xue, T. Xu, G. He, and H. Chen. 2017. “Enhanced Photocatalytic Activity of Magnetic Core–Shell Fe3O4@ Bi2O3–RGO Heterojunctions for Quinolone Antibiotics Degradation under Visible Light.” Journal of Materials Science: Materials in Electronics 28(12): 8519–28. doi:10.1007/s10854-017-6574-6.
  • Zhuang, Y., F. Yu, and J. Ma. 2015. “Enhanced Adsorption and Removal of Ciprofloxacin on Regenerable Long TiO2 Nanotube/Graphene Oxide Hydrogel Adsorbents.” Journal of Nanomaterials 2015: 1. doi:10.1155/2015/675862.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.