205
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Acid Sulphite Pretreatment on Enzymatic Hydrolysis of Eucalypt, Broom, and Pine

, &

REFERENCES

  • Hamelinck, C.N.; van Hooijdonk, G; Faaij, A.P.C. Ethanol from lignocellulosic biomass: Techno-economic performance in short-, middle- and long-term. Biomass Bioenerg. 2005, 28, 384–410.
  • Kazi, F.K.; Fortman, J.A.; Anex, R.P.; Hsu, D.D.; Aden, A.; Dutta, A.; Kothandaraman, G. Techno-economic comparision of process technologies for biochemical ethanol production from corn stover. Fuel 2010, 89, S20–S28.
  • Balat, M.; Balat, H.; Oz, C. Progress in bioethanol processing. Prog. Energ. Combust. 2008, 34, 551–573.
  • Margeot, A.; Hahn-Hagerdal, B.; Edlund, M.; Slade, R.; Monot, F. New improvements for lignocellulosic ethanol. Curr. Opin. Biotech. 2009, 20, 1–9.
  • Mészáros, E.; Jakab, E.; Gáspár, M.; Réczey, K.; Várhegyi, G. Thermal behavior of corn fibers and corn fiber gums prepared in fiber processing to ethanol. J. Anal. Appl. Pyrolysis 2009, 85, 11–18.
  • Copur, Y.; Tozluoglu, A.; Ucar, M.B. NaBH4 pretreatment in bioethanol production of corn stalks. J. Wood Chemistry and Technology 2013, 33(2), 125–143.
  • Balat, M. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energ. Convers. Manage. 2011, 52, 858–875.
  • Zhu, J.Y.; Pan, X.J.; Wang, G.S.; Gleisner, R. Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Biores. Technol. 2009, 100, 2411–2418.
  • Wang, G.S.; Pan, X.J.; Zhu, J.Y.; Gleisner, R.; Rockwood, D. Sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of hardwoods. Biotechnol. Progr. 2009, 25(4), 1086–1093.
  • Araque, E.; Parra, C.; Freer, J.; Contreras, D.; Rodríguez, J.; Mendonça, R.; Baeza, J. Evaluation of organosolv pretreatment for the conversion of Pinus radiata D. Don to ethanol. Enzyme Microb. Tech. 2008, 43, 214–219.
  • Novozymes. http://www.bioenergy.novozymes.com/en/cellulosic-ethanol/insight/Pages/default.aspx (accessed October 2014.
  • Rasmussen, H.; Sorensen, H.R.; Meyer, A.S. Formation of degradation compounds from lignocellulosic biomass in the biorefinery: Sugar reaction mechanisms. Carbohyd. Res. 2014, 385, 45–57.
  • Zhang, D.S.; Yang, Q.; Zhu, J.Y.; Pan, X.J. Sulfite (SPORL) pretreatment of switchgrass for enzymatic saccharification. Biores. Technol. 2013, 129, 127–134.
  • Ramachandriya, K.D.; Wilkins, M.R.; Hiziroglu, S.; Dunford, N. Development of an efficient pretreatment for enzymatic saccharification of Eastern red cedar. Biores. Technol. 2013, 136, 131–139.
  • Shuai, L.; Yang, Q.; Zhu, J.Y.; Lu, F.C.; Weimer, P.J.; Ralph, J.; Pan, X.J. Comparative study of SPORL and diluted-acid pretreatment of spruce for cellulosic ethanol production. Biores. Technol. 2010, 101, 3106–3114.
  • Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure, Reactions; Walter de Gruyter: Berlin, 1989; 281–283.
  • Pan, X.; Zhu, J.Y. An update on sulfite pretreatment (SPORL) of lignocellulosic biomass for effective production of cellulose ethanol. Proceedings of the 16th International Symposium on Wood, Fiber and Pulping Chemistry; Light Industry Press: Tianjin, China, 2011; 968–972.
  • Leu, S.-Y.; Zhu, J.Y.; Gleisner, R.; Sessions, J.; Marrs, G. Robust enzymatic saccharification of a Douglas fir forest harvest residue by SPORL. Biomass Bioenerg. 2013, 59, 393–401.
  • TAPPI test methods. T 264 om-88. Preparation of wood for chemical analysis.
  • Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure, NREL/TP-510-42618; revised 2010.
  • Ferreira, P.J.T.; Gamelas J.A.F.; Carvalho, M.G.V.S.; Duarte, G.V.; Canhoto, J.M.P.L.; Passas, R. Evaluation of the papermaking potential of Ailanthus altissima. Ind. Crop. Prod. 2013, 42, 538–542.
  • Gil, N.; Domingues, F.C.; Amaral, M.E.; Duarte, A.P. Optimization of diluted acid pretreatment of Cytisus striatus and Cistus ladanifer for bioethanol production. J. Biobased Mater. Bio. 2012, 6, 1–7.
  • TAPPI test methods. T 204 om-88. Solvent extractives of wood and pulp
  • ISO 302. Pulps: Determination of kappa number, 2004.
  • Schöning, A.G.; Johansson, G. Colorimetric determination of acid-soluble lignin in semichemical bisulphite pulps and in some woods and plants. Svensk Papperstidn. 1965, 68(18), 607–613.
  • Novozymes’ cellulose ethanol enzyme kit. Technical Sheets, Bagsvaerd, Denmark: Novozymes.
  • Zhang, C.; Houtman, C.J.; Zhu, J.Y. Using low temperature to balance enzymatic saccharification and furan formation during SPORL pretreatment of Douglas fir. Process Biochem. 2014, 49(3), 466–473.
  • Evtuguin, D.V.; Tomás, J.L.; Silva, A.M.S.; Neto, C.P. Characterization of an acetylated heteroxylan from Eucalyptus globulus Labill. Carbohyd. Res. 2003, 338, 597–604.
  • Walker, J.C.F. Primary Wood Processing: Principles and Practice; Springer: Amsterdam, 2006.
  • Karunanithy, C.; Muthukumarappan, K. Thermo-mechanical pretreatments of feedstocks. In Green Biomass Pretreatment for Biofuels Production; Gu, T., Ed.; Springer: Amsterdam, 2013; 55–66.
  • Moreno, A.D.; Tomás-Pejó, E.; Ibarra, D.; Ballesteros, M.; Olsson, L. In situ laccase treatment enhances the fermentability of steam-exploded wheat straw in SSCF processes at high dry matter consistencies. Biores. Technol. 2013, 143, 337–343.
  • Du, B.; Sharma, L.N.; Becker, C.; Chen, S-F.; Mowery, R.; van Walsum, P.; Chambliss, C.K. Effect of varying feedstock-pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates. Biotechnol. Bioeng. 2010, 107(3), 430–440.
  • Meng, X.; Ragauskas, A.J. Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr. Opin. Biotech. 2014, 27, 150–158.
  • Sun, Q; Foston, M.; Meng, X.; Sawada, D.; Pingali, S.V.; O’Neill, H.; Li, H.; Wyman, C.E.; Langan, P.; Ragauskas, A.J.; Kumar, R. Effect of lignin content on changes occurring in poplar cellulose ultrastructure during acid pretreatment. Biotech. for Biofuels. 2014, 7, 150–164.
  • Leu, S.-Y.; Zhu, J.Y. Substrate-related factors affecting enzymatic saccharification of lignocelluloses: Our recent understanding. Bioenerg. Res. 2013, 6, 405–415.
  • Zeng, Y.; Zhao, S.; Yang, S.; Ding, S-Y. Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr. Opin. Biotech. 2014, 27, 38–45.
  • Ishizawa, C.I.; Jeoh, T.; Adney, W.S.; Himmel, M.E.; Johnson, D.K.; Davis, M.F. Can delignification decrease cellulose digestibility in acid pretreated corn stover? 2009, 16, 677–686.
  • Al Katrib, F.; Chambat, G.; Joseleau, J.P. Effect of pretreatment of poplar wood upon enzymatic saccharification. J. Wood Chem. Technol. 1992, 12(3), 355–366.
  • Luo, X.; Zhu, J.H. Effects of drying-induced fiber hornification on enzymatic saccharification of lignocelluloses. Enzyme Microb. Tech. 2011, 48, 92–99.
  • Jeoh, T.; Ishizawa, C.I.; Davis, M.F.; Himmel, M.E.; Adney, W.S.; Johnson, D.K. Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol. Bioeng. 2007, 98(1), 112–122.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.