239
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Chemical Factors Underlying the More Rapid β-O-4 Bond Cleavage of Syringyl than Guaiacyl Lignin under Alkaline Delignification Conditions

, , &
Pages 451-466 | Received 13 Mar 2017, Accepted 07 Jun 2017, Published online: 13 Jul 2017

REFERENCES

  • Fergus, B. J.; Goring, D. A. I. The topochemistry of delignification in kraft and neutral sulfite pulping of birch wood. Pulp and Paper Magazine of Canada 1969, 19, T315–T320.
  • Chang, H. M.; Sarkanen, K. V. Species variation in lignin: Effect of species on the rate of kraft delignification. TAPPI Journal 1973, 56(3), 132–134.
  • Stewart, J. J.; Kadla, J. F.; Mansfield, S. G. The influence of lignin chemistry and ultrastructure on the pulping efficiency of clonal aspen (Pupulus tremuloides Michx.). Holzforschung 2006, 60(2), 111–122.
  • Guerra, A.; Elissetche, J. P.; Norambuena, M.; Freer, J.; Valenzuela, S.; Rodriguez, J.; Balocchi, C. Influence of lignin structural features on Eucalyptus globulus kraft pulping. Industrial & Engineering Chemistry Research 2008, 47(22), 8542–8549.
  • Santos, R. B.; Jameel, H.; Chang, H. M.; Hart, P. W. Impact of lignin and carbohydrate chemical structures on degradation reactions during hardwoos kraft pulping processes. BioResources 2013, 8(1), 158–171.
  • Ventorim, G.; Alves, E. F.; Penna, L. S.; Francis, R. C. Effect of S/G ratio on kraft pulping and ECF bleaching of some poplars and eucalyptus. Cellulose Chemistry and Technology 2014, 48(3–4), 365–373.
  • Aguayo, M. G.; Ferraz, A.; Elissetche, J. P.; Masarin, F.; Mendonca, R. T. Lignin chemistry and tepochemistry during kraft delignification of Eucalyptus globulus genotypes with contrasting pulpwood characteristics. Holzforschung 2014, 68(6), 623–629.
  • Almeida, D.; Santos, R. B.; Hart, P. W.; Jameel, H. Hardwood pulping kinetics of bulk and residual phases. TAPPI Journal 2015, 14(10), 652–662.
  • Nicholson, D. J.; Guilford, C. R.; Abiola, A. B.; Bose, S. K.; Francis, R. C. Estimation of the S/G ratios of the lignins in three widely used North American hardwoods. TAPPI Journal 2016, 15(7), 449–457.
  • Nawawi, D. S.; Syafii, W.; Tomoda, I.; Uchida, Y.; Akiyama, T.; Yokoyama, Y.; Matsumoto, Y. Characteristics and reactivity of lignin in Acacia and Eucalyptus woods. Journal of Wood Chemistry and Technology 2017, 37(4), 273–282.
  • Miksche, G. E. Zum alkalischen abbau von arylglycerin-β-(2,6-dimethoxy-4-alkylaryl)-ätherstrukturen. Acta Chemica Scandinavica 1973, 27(4), 1355–1368.
  • Tsutsumi, Y.; Kondo, R.; Imamura, H. Reaction of syringylglycerol-β-syringyl ether type of lignin model compounds in alkaline-medium. Journal of Wood Chemistry and Technology 1993, 13(1), 25–42.
  • Schultz, T. P.; Fisher, T. H. Alkaline hydrolysis of nonphenolic β-O-4 lignin models: Substituent effect of the A-ring on the rate. Holzforschung 2002, 56(6), 592–594.
  • Miksche, G. E. Zum alkalischen abbau der p-alkoxy-arylglycerin-β-arylätherstrukturen des lignins: Versuche mit erythro-veratrylglycerin-β-guajacyläther. Acta Chemica Scandinavica 1972, 26(8), 3275–3281.
  • Criss, D. L.; Elder, T.; Fisher, T. H.; Schultz, T. P. Effect of the α-and γ-hydroxyls on the alkaline hydrolysis rate of nonphenolic β-O-4 lignin diastereomers. Holzforschung 2002, 56(1), 67–72.
  • Shimizu, S.; Yokoyama, T.; Akiyama, T.; Matsumoto, Y. Reactivity of lignin with different composition of aromatic syringyl/guaiacyl structures and erythro/threo side chain structures in β-O-4 type during alkaline delignification: As a basis for the different degradability of hardwood and softwood lignin. Journal of Agricultural and Food Chemistry 2012, 60(26), 6471–6476.
  • Shimizu, S.; Posoknistakul, P.; Yokoyama, T.; Matsumoto, Y. Quantitative difference in the rates of the β-O-4 bond cleavage between lignin model compounds with and without γ-hydroxymethyl groups during the alkaline pulping process. BioResources 2013, 8(3), 4312–4322.
  • Shimizu, S.; Yokoyama, T.; Matsumoto, Y. Effect of type of aromatic nucleus in lignin on the rate of the β-O-4 bond cleavage during alkaline pulping process. Journal of Wood Science 2015, 61(5), 529–536.
  • The Chemical Society of Japan. Constants of Chemical Equilibrium. Kagaku-binran Fundamental II, revised 2nd edition, Maruzen Co. Ltd., Tokyo, Japan, 1975, 996 ( in Japanese).
  • Ragnar, M.; Lindgren, C. T.; Nilvebrant, N. O. pKa values of guaiacyl and syringyl phenols related to lignin. Journal of Wood Chemistry and Technology 2000, 20(3), 277–305.
  • Adler, E.; Lindgren, B. O.; Saeden, U. The β-guaiacyl ether of α-veratrylglycerol as a lignin model. Svensk Papperstidning 1952, 55(7), 245–254.
  • Suzuki, Y.; Ono, K.; Anazawa, I. NMR spectra of OH protons of phenols obtained by addition of various metallic salts. Bunseki Kagaku 1981, 30(9), 557–560 ( in Japanese).
  • Lide, D. R. ed. CRC Handbook of Chemistry and Physics, 86th edition (CD-ROM version 2006), Taylor and Frances: Boca Raton, UK, 2006.
  • Hammett, L. P. The effect of structure upon the reactions of organic compounds. Benzene derivatives. Journal of the American Chemical Society 1937, 59(1), 96–103.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.