275
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Manufacture of Furfural from Xylan-containing Biomass by Acidic Processing of Hemicellulose-Derived Saccharides in Biphasic Media Using Microwave Heating

, , , &
Pages 198-213 | Received 17 Jul 2017, Accepted 14 Dec 2017, Published online: 13 Mar 2018

REFERENCES

  • Gullón, P.; Romaní, A.; Vila, C.; Garrote, G.; Parajó, J. C. Potential of Hydrothermal Treatments in Lignocellulose Biorefineries. Biofuels, Bioprod. Biorefin. 2014, 6, 219–232. DOI: 10.1002/bbb.339.
  • Dutta, S.; De, S.; Saha, B.; Imteyaz, A. M. Advances in Conversion of Hemicellulosic Biomass to Furfural and Upgrading to Biofuels. Catal. Sci. Tech. 2012, 2, 2025–2036. DOI: 10.1039/c2cy20235b.
  • Cai, C. M.; Zhang, T.; Kumar, R.; Wyman, C. E. Integrated Furfural Production as a Renewable Fuel and Chemical Platform from Lignocellulosic Biomass. J. Chem. Technol. Biotechnol. 2014, 89, 2–10. DOI: 10.1002/jctb.4168.
  • Mariscal, R.; Maireles-Torres, P.; Ojeda, M.; Sádaba, I.; López Granados, M. Furfural: A Renewable and Versatile Platform Molecule for the Synthesis of Chemicals and Fuels. Energy Environ. Sci. 2016, 9, 1144–1189. DOI: 10.1039/C5EE02666K.
  • Peleteiro, S.; Rivas, S.; Alonso, J. L.; Santos, V.; Parajó, J. C. Furfural Production Using Ionic Liquids: A Review. Bioresour. Technol. 2016, 202, 181–191. DOI: 10.1016/j.biortech.2015.12.017.
  • Peng, Z.; Zehui, Z. One-Pot Catalytic Conversion of Carbohydrates into Furfural and 5-Hydroxymethylfurfural. Catal. Sci. Technol. 2016, 6, 3694–3712. DOI: 10.1039/C6CY00384B.
  • Zeitsch, K. J. The Chemistry and Technology of Furfural and Its Many Byproducts. In Sugar Series, vol. 13; Elsevier Science: Amsterdam, 2000, pp. 98–104. ISBN: 9780080528991.
  • Chheda, J. N.; Roman-Leshkov, Y.; Dumesic, J. A. Production of 5- Hydroxymethylfurfural and Furfural by Dehydration of Biomass Derived Mono and Poly-Saccharides. Green Chem. 2007, 9, 342–350. DOI: 10.1039/B611568C.
  • Xing, R.; Qi, W.; Huber, G. W. Production of Furfural and Carboxylic Acids from Waste Aqueous Hemicellulose Solutions from the Pulp and Paper and Cellulosic Ethanol Industries. Energy Environ Sci. 2011, 4, 2193–2205. DOI: 10.1039/c1ee01022k.
  • Zhang, L.; Xi, G.; Yu, K.; Yu, H.; Wang, X. Furfural Production from Biomass-Derived Carbohydrates and Lignocellulosic Residues Via Heterogeneous Acid Catalysts. Ind. Crops Prod. 2017, 98, 68–75. DOI: 10.1016/j.indcrop.2017.01.014.
  • Lange, J. P.; van der Heide, E.; van Buijtenen, J.; Price, R. Furfural-A Promising Platform for Lignocellulosic Biofuels. Chem. Sus. Chem. 2012, 5, 150–166. DOI: 10.1002/cssc.201100648.
  • Yan, K.; Wu, G.; Lafleur, T.; Jarvis, C. Production, Properties and Catalytic Hydrogenation of Furfural to Fuel Additives and Value-Added Chemicals. Renewable Sustainable Energy Rev. 2014, 38, 663–676. DOI: 10.1016/j.rser.2014.07.003.
  • Choi, S.; Song, C. W.; Shin, J. H.; Lee, S. Y. Biorefineries for the Production of Top Building Block Chemicals and Their Derivatives. Metab. Eng. 2015, 28, 223–239. DOI: 10.1016/j.ymben.2014.12.007.
  • Kim, E. S.; Liu, S.; Abu-Omar, M. M.; Mosier, N. S. Selective Conversion of Biomass Hemicellulose to Furfural Using Maleic Acid with Microwave Heating. Energy Fuels 2012, 26, 1298–1304. DOI: 10.1021/ef2014106.
  • Sánchez, C.; Serrano, L.; Andres, M. A.; Labidi, J. Furfural Production from Corn Cobs Autohydrolysis Liquors by Microwave Technology. Ind. Crops Prod. 2013, 42, 513–519. DOI: 10.1016/j.indcrop.2012.06.042.
  • Baktash, M. M.; Ahsan, L.; Ni, Y. Production of Furfural from an Industrial Pre-Hydrolysis Liquor. Sep. Purif. Technol. 2015, 149, 407–412. DOI: 10.1016/j.seppur.2015.06.003.
  • García-Domínguez, M. T.; García-Domínguez, J. C.; López, F.; De Diego, C. M.; Díaz, M. J. Maximizing Furfural Concentration from Wheat Straw and Eucalyptus Globulus by Nonisothermal Autohydrolysis. Environ. Prog. Sustain Energy 2015, 34, 1236–1242. DOI: 10.1002/ep.12099.
  • Guenic, S. L.; Delbecq, F.; Ceballos, C.; Len, C. Microwave-Assisted Dehydration of D-Xylose into Furfural by Diluted Inexpensive Inorganic Salts Solution in a Biphasic System. J. Mol. Catal. A: Chem. 2015, 410, 1–7. DOI: 10.1016/j.molcata.2015.08.019.
  • Peleteiro, S.; Garrote, G.; Santos, V.; Parajó, J. C. Furan Manufacture from Softwood Hemicelluloses by Aqueous Fractionation and Further Reaction in a Catalyzed Ionic Liquid: A Biorefinery Approach. J. Cleaner Prod. 2014, 76, 200–203. DOI: 10.1016/j.jclepro.2014.04.034.
  • Weingarten, R.; Cho, J.; Conner, W. C., Jr.; Huber, G. W. Kinetics of Furfural Production by Dehydration of Xylose in a Biphasic Reactor with Microwave Heating. Green Chem. 2010, 12, 1423–1429. DOI: 10.1039/c003459b.
  • Kumar, R.; Hu, F.; Sannigrahi, P.; Jung, S.; Ragauskas, A.J.; Wyman, C. E. Carbohydrate Derived-Pseudo-Lignin Can Retard Cellulose Biological Conversion. Biotechnol. Bioeng. 2013, 110, 737–753. DOI: 10.1002/bit.24744.
  • Rasmussen, H.; Sørensen, H. R.; Meyer, A. S. Formation of Degradation Compounds from Lignocellulosic Biomass in the Biorefinery: Sugar Reaction Mechanisms. Carbohydr. Res. 2014, 385, 45–57. DOI: 10.1016/j.carres.2013.08.029.
  • Gómez Bernal, H.; Bernazzani, L.; Raspolli Galletti, A. M. Furfural from Corn Stover Hemicelluloses. A Mineral Acid-Free Approach. Green Chem. 2014, 16, 3734–3740. DOI: 10.1039/C4GC00450G.
  • Antonetti, C.; Bonari, E.; Licursi, D.; Di Nasso, N.; Raspolli Galletti, A. M. Hydrothermal Conversion of Giant Reed to Furfural and Levulinic Acid: Optimization of the Process Under Microwave Irradiation and Investigation of Distinctive Agronomic Parameters. Molecules 2015, 20, 21232–21253. DOI: 10.3390/molecules201219760.
  • Raspolli Galletti, A. M.; Antonetti, C.; De Luise, V.; Licursi, D.; Di Nasso, N. Levulinic Acid Production from Waste Biomass. Bioresources 2012, 7, 1824–1835. DOI: 10.15376/biores.7.2.1824-1835.
  • Rivas, S.; Raspolli Galletti, A. M.; Antonetti, C.; Santos, V.; Parajó, J. C. Sustainable Production of Levulinic Acid from the Cellulosic Fraction of Pinus Pinaster Wood: Operation in Aqueous Media Under Microwave Irradiation. J. Wood Chem. Technol. 2015, 35, 315–324. DOI: 10.1080/02773813.2014.962152.
  • Yemiş, O.; Mazza, G. Acid-Catalyzed Conversion of Xylose, Xylan and Straw into Furfural by Microwave-Assisted Reaction. Bioresour. Technol. 2011, 102, 7371–7378. DOI: 10.1016/j.biortech.2011.04.050.
  • Hricovíniová, Z. Xylans are a Valuable Alternative Resource: Production of D-Xylose, D-Lyxose and Furfural Under Microwave Irradiation. Carbohydr. Polym. 2013, 98, 1416–1421. DOI: 10.1016/j.carbpol.2013.07.066.
  • Delbecq, F.; Wang, Y.; Len, C. Conversion of Xylose, Xylan and Rice Husk into Furfural Via Betaine and Formic Acid Mixture as Novel Homogeneous Catalyst in Biphasic System by Microwave-Assisted Dehydration. J. Mol. Catal. A Chem. 2016, 423, 520–525. DOI: 10.1016/j.molcata.2016.07.003.
  • Yang, Y.; Hu, C. W.; Abu-Omar, M. M. Synthesis of Furfural from Xylose, Xylan, and Biomass Using AlCl3·6 H2O in Biphasic Media Via Xylose Isomerization to Xylulose. Chem. Sus. Chem. 2012, 5, 405–410. DOI: 10.1002/cssc.201100688.
  • Garrote, G.; Parajó, J. C. Non-Isothermal Autohydrolysis of Eucalyptus Wood. Wood Sci. Technol. 2002, 36, 111–123. DOI: 10.1007/s00226-001-0132-2.
  • Garrote, G.; Domínguez, H.; Parajó, J. C. Autohydrolysis of Corncob: Study of Non-Isothermal Operation for Xylooligosaccharide Production. J. Food Eng. 2002, 52, 211–218. DOI: 10.1016/S0260-8774(01)00108-X.
  • Rivas, S.; Vila, C.; Santos, V.; Parajó, J. C. Furfural Production from Birch Hemicelluloses by Two-Step Processing: A Potential Technology for Biorefineries. Holzforschung 2016, 70, 901–910. DOI: 10.1515/hf-2015-0255.
  • Parajó, J. C.; Garrote, G.; Cruz, J. M.; Dominguez, H. Production of Xylooligosaccharides by Autohydrolysis of Lignocellulosic Materials. Trends Food Sci. Technol. 2004, 15, 115–120. DOI: 10.1016/j.tifs.2003.09.009.
  • Romaní, A.; Garrote, G.; López, F.; Parajó, J. C. Eucalyptus Globulus Wood Fractionation by Autohydrolysis and Organosolv Delignification. Bioresour. Technol. 2011, 102, 5896–5904. DOI: 10.1016/j.biortech.2011.02.070.
  • Zhu, T.; Li, P.; Wang, X.; Yang, W.; Chang, H.; Ma, S. Optimization of Formic Acid Hydrolysis of Corn Cob in Xylose Production. Korean J. Chem. Eng. 2014, 31, 1624–1631. DOI: 10.1007/s11814-014-0073-8.
  • Ares-Peón, I. A.; Garrote, G.; Domínguez, H.; Parajó, J. C. Phenolics Production from Alkaline Hydrolysis of Autohydrolysis Liquors. CYTA – J. Food 2016, 14, 255–265. DOI: 10.1080/19476337.2015.1094516.
  • Cai, D.; Dong, Z.; Wang, Y.; Chen, C.; Li, P.; Qin, P.; Wang, Z.; Tan, T. Co-Generation of Microbial Lipid and Bio-Butanol from Corn Cob Bagasse in an Environmentally Friendly Biorefinery Process. Bioresource Technol. 2016, 216, 345–351. DOI: 10.1016/j.biortech.2016.05.073.
  • Rivas, S.; Gonzalez-Muñoz, M. J.; Santos, V.; Parajó, J. C. Acidic Processing of Hemicellulosic Saccharides from Pine Wood: Product Distribution and Kinetic Modeling. Bioresour. Technol. 2014, 162, 192–199. DOI: 10.1016/j.biortech.2014.03.150.
  • Rivas, S.; Gonzalez-Muñoz, M. J.; Santos, V.; Parajó, J. C. Production of Furans from Hemicellulosic Saccharides in Biphasic Reaction Systems. Holzforschung 2013, 67, 923–929. DOI: 10.1515/hf-2013-0017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.