583
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Spraying Cellulose Nanofibrils for Improvement of Tensile and Barrier Properties of Writing & Printing (W&P) Paper

, , ORCID Icon, , &
Pages 233-245 | Received 24 Oct 2017, Accepted 22 Jan 2018, Published online: 30 Mar 2018

REFERENCES

  • Henriksson, M.; Berglund, L. A.; Isaksson, P.; Lindström, T.; Nishino, T. Cellulose Nanopaper Structures of High Toughness. Biomacromolecules. 2008, 9(6), 1579–1585. doi:10.1021/bm800038n.
  • Iwamoto, S.; Nakagaito, A. N.; Yano, H. Nano-Fibrillation of Pulp Fibers for the Processing of Transparent Nanocomposites. Appl. Phys. A: Mater. Sci. Process. 2007, 89(2), 461–466. doi:10.1007/s00339-007-4175-6.
  • Siró, I.; Plackett, D. Microfibrillated Cellulose and New Nanocomposite Materials: A Review. Cellulose 2010, 17(3), 459–494. doi:10.1007/s10570-010-9405-y.
  • Bian, H.; Chen, L.; Dai, H.; Zhu J. Y. Integrated Production of Lignin Containing Cellulose Nanocrystals (LCNC) and Nanofibrils (LCNF) using an Easily Recyclable Di-Carboxylic Acid. Carbohydr. Polym. 2017, 167, 167–176. doi:10.1016/j.carbpol.2017.03.050.
  • Fonseca, C. S.; Silva, T. F.; Silva, M. F.; Oliveira, I. R. C.; Mendes, R. F.; Hein, P. R. G.; Mendes, L. M.; Tonoli, G. H. D.. Micro/Nanofibrilas Celulósicas de Eucalyptus em Fibrocimentos Extrudados. CERNE. 2016, 22, 59–68. doi:10.1590/01047760201622012084.
  • Tonoli, G. H. D.; Teixeira, E. M.; Corrêa, A. C.; Marconcini, J. M.; Caixeta, L. A.; Pereira-Da-Silva, M. A.; Mattoso, L. H. C. Cellulose Micro/Nanofibres from Eucalyptus Kraft Pulp: Preparation and Properties. Carbohyd. Polym. 2012, 89(1), 80–88. doi:10.1016/j.carbpol.2012.02.052.
  • Bufalino, L.; Sena Neto, A. R.; Tonoli, G. H. D.; Fonseca, A. S.; Costa, T. G.; Marconcini, J. M.; Colodette, J. L.; Labory, C. R. G.; Mendes, L. M. How the Chemical Nature of Brazilian Hardwoods Affects Nanofibrillation of Cellulose Fibers and Film Optical Quality. Cellulose. 2015, 22, 3657–3672. doi:10.1007/s10570-015-0771-3.
  • Scatolino, M. V.; Bufalino, L.; Mendes, L. M.; Guimarães Júnior, M.; Tonoli, G. H. D. Impact of Nanofibrillation Degree of Eucalyptus and Amazonian Hardwood Sawdust on Physical Properties of Cellulose Nanofibril Films. Wood Sci. Technol. 2017a, 51, 1–21. doi:10.1007/s00226-017-0927-4.
  • Scatolino, M. V.; Silva, D. W.; Bufalino, L.; Tonoli, G. H. D.; Mendes, L. M. Influence of Cellulose Viscosity and Residual Lignin on Water Absorption of Nanofibril Films. Proced. Eng. 2017b, 200, 155–161. doi:10.1016/j.proeng.2017.07.023.
  • Pacaphol, K.; Aht-Ong, D. Preparation of Hemp Nanofibers from Agricultural Waste by Mechanical Defibrillation in Water. J. Clean. Prod. 2017, 142, 1283–1295. doi:10.1016/j.jclepro.2016.09.008.
  • Xu, C.; Wang, G.; Xing, C.; Matuana, L. M.; Zhou, H. Effect of Graphene Oxide Treatment on the Properties of Cellulose Nanofibril Films Made of Banana Petiole Fibers. BioResources. 2015, 10, 2809–2822. doi:10.15376/biores.10.2.2809-2822.
  • Lin, J.; Yu, L.; Tian, F.; Zhao, N.; Li, X.; Bian, F.; Wang, J. Cellulose Nanofibrils Aerogels Generated from Jute Fibers. Carbohydr. Polym. 2014, 109, 35–43. doi:10.1016/j.carbpol.2014.03.045.
  • Guimarães Jr., M.; Botaro, V. R.; Novack, K. M.; Flauzino Neto, W. P.; Mendes L. M.; Tonoli, G. H. D. Preparation of Cellulose Nanofibrils from Bamboo Pulp by Mechanical Defibrillation for Their Applications in Biodegradable Composites. J. Nanosci. Nanotechnol. 2015a, 15, 6751–6768. doi:10.1166/jnn.2015.10854.
  • Guimarães Jr., M.; Botaro, V. R.; Novack, K. M.; Teixeira, F. G.; Tonoli, G. H. D. Starch/PVA Based Nanocomposites Reinforced with Bamboo Nanofibrils. Ind. Crops Prod. 2015b, 70, 72–83. doi:10.1016/j.indcrop.2015.03.014.
  • Julie Chandra, C. S.; George, N.; Narayanankutty, S. K. Isolation and Characterization of Cellulose Nanofibrils from Arecanut Husk Fibre. Carbohydr. Polym. 2016, 142, 158–166. doi:10.1016/j.carbpol.2016.01.015.
  • Krishnan K. A.; Jose, C.; Rohith, R. K.; George K. E. Sisal Nanofibril Reinforced Polypropylene/Polystyrene Blends: Morphology, Mechanical, Dynamic Mechanical and Water Transmission Studies. Ind. Crops Prod. 2015, 71, 173–184. doi:10.1016/j.indcrop.2015.03.076.
  • Chen, Y. W.; Lee, H. V.; Juan, J. V.; Phang, S. M. Production of New Cellulose Nanomaterial From Red Algae Marine Biomass Gelidium Elegans. Carbohydr. Polym. 2016, 151, 1210–1219. doi:10.1016/j.carbpol.2016.06.083.
  • Corral, M. L.; Cerrutti, P.; Vázquez, A.; Califano, A. Bacterial nanocellulose as a potential additive for wheat bread. Food Hydrocolloids. 2017, 67, 189–196 doi:10.1016/j.foodhyd.2016.11.037.
  • Garcia, A.; Gandini, A.; Labidi, J.; Belgacem, N.; Bras, J. Industrial and Crop Wastes: A New Source for Nanocellulose Biorefinery. Ind. Crops Prod. 2016, 93, 26–38. doi:10.1016/j.indcrop.2016.06.004.
  • Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A.; Nanocelluloses: A New Family of Nature-Based Materials. Angew. Chem. – Int. Ed. 2011, 50(24), 5438–5466. doi:10.1002/anie.201001273.
  • Aulin, C.; Gällstedt, M.; Lindström, T. Oxygen and Oil Barrier Properties of Microfibrillated Cellulose Films and Coatings. Cellulose. 2010, 17(3), 559–574. doi:10.1007/s10570-009-9393-y.
  • Lavoine, N.; Guillard, V.; Desloges, I.; Gontard, N.; Bras, J. Active Bio-Based Food-Packaging: Diffusion and Release of Active Substances Through and From Cellulose Nanofiber Coating Toward Food-Packaging Design. Carbohydr. Polym. 2016, 149, 40–50. doi:10.1016/j.carbpol.2016.04.048.
  • Mirmehdi, S.; Hein, P. R. G.; Sarantópoulos, C. I. G. L.; Dias, M. V.; Tonoli, G. H. D. Cellulose Nanofibrils/Nanoclay Hybrid Composite as a Paper Coating: Effects of Spray Time, Nanoclay Content and Corona Discharge on Barrier and Mechanical Properties of the Coated Papers. Food Packaging and Shelf Life; In Press, 2017. (Doi: 10.1016/j.fpsl.2017.11.007).
  • Arantes, A. C. C.; Almeida, C.; Dauzacker, L.; Bianchi, M. L.; Wood, D.; Williams T.; Orts, W. J.; Tonoli, G. H. D. Renewable Hybrid Nanocatalyst from Magnetite and Cellulose for Treatment of Textile Effluents. Carbohydr. Polym. 2017, 163, 101–107. doi:10.1016/j.carbpol.2017.01.007.
  • Donia, A. M.; Atia, A. A.; Abouzayed, F. I. Preparation and Characterization of Nano-Magnetic Cellulose with Fast Kinetic Properties Towards the Adsorption of Some Metal Ions. Chem. Eng. J. 2012, 191, 22–30. doi:10.1016/j.cej.2011.08.034.
  • Gupta, V. K.; Pathania, D.; Singh, P.; Rathore, B. S.; Chauhan, P. Cellulose Acetate-Zirconium (IV) Phosphate Nano-Composite with Enhanced Photo-Catalytic Activity. Carbohydr. Polym. 2013, 95, 434–440. doi:10.1016/j.carbpol.2013.02.045.
  • Fortunati, E.; Rinaldi, S.; Peltzer, M.; Bloise, N.; Visai, L.; Armentano, I.; Jiménez, A.; Latterini, L.; Kenny, J. M. Nano-Biocomposite Films with Modified Cellulose Nanocrystals and Synthesized Silver Nanoparticles. Carbohydr. Polym. 2014, 101, 1122–1133. doi:10.1016/j.carbpol.2013.10.055.
  • Chinnama, P. R.; Mantravadia, R.; Jimeneza, J. C.; Dikinb, D. A.; Wundera, S. L. Lamellar, Micro-Phase Separated Blends of Methyl Cellulose and Dendritic Polyethylene Glycol. Carbohydr. Polym. 2016, 136, 19–29. doi:10.1016/j.carbpol.2015.08.087.
  • Cho, M. J.; Park, B. D. Tensile and Thermal Properties of Nanocellulose-Reinforced Poly(vinyl alcohol) Nanocomposites. J. Ind. Eng. Chem. 2011, 17(1), 36–40. doi:10.1016/j.jiec.2010.10.006.
  • Shao, Y.; Yashiro, T.; Okubo, K.; Fujii, T. Effect of Cellulose Nano Fiber (CNF) on Fatigue Performance of Carbon Fiber Fabric Composites. Compos. Part A. 2015, 76, 244–254. doi:10.1016/j.compositesa.2015.05.033.
  • Volk, N.; He, R.; Magniez, K. Enhanced Homogeneity and Interfacial Compatibility in Melt Extruded Cellulose Nano-Fibers Reinforced Polyethylene via Surface Adsorption of Poly (Ethylene Glycol)-Block-Poly(Ethylene) Amphiphiles. Eur. Polym. J. 2015, 72, 270–281. doi:10.1016/j.eurpolymj.2015.09.025.
  • Missoum, K.; Martoïa, F.; Belgacem, M. N.; Bras, J. Effect of Chemically Modified Nanofibrillated Cellulose Addition on the Properties of Fiber-Based Materials. Indust. Crops Prod. 2013, 48, 98–105. doi:10.1016/j.indcrop.2013.04.013.
  • Beneventi, D.; Chaussy, D.; Curtil, D.; Zolin, L.; Gerbaldi, C.; Penazzi N. Highly Porous Paper Loading with Microfibrillated Cellulose by Spray Coating on Wet Substrates. Ind. Eng. Chem. Res. 2014, 53, 10982–10989. doi:10.1021/ie500955x.
  • Li, F.; Mascheroni, E.; Piergiovanni, L. The Potential of Nanocellulose in the Packaging Field: A Review. Packag Technol Sci. 2015, 28, 475–508. doi:10.1002/pts.2121.
  • Nair, S. S.; Zhu, J. Y.; Deng, Y.; Ragauskas, A. J. High Performance Green Barriers Based on Nanocellulose. Sustainable Chem. Proc. 2014, 2, 23. doi:10.1186/s40508-014-0023-0.
  • Hult, E. L.; Iotti, M.; Lenes, M. Efficient Approach to High Barrier Packaging Using Microfibrillar Cellulose and Shellac. Cellulose. 2010, 17, 575–586. doi:10.1007/s10570-010-9408-8.
  • Johansson, C.; Bras, J.; Mondragon, I.; Nechita, P.; Plackett, D.; Simon, P.; Svetec, D. G.; Virtanen, S.; Baschetti, M. G.; Breen, C.; Aucejo, S. Renewable Fibers and Bio-Based Materials for Packaging Applications – A Review of Recent Developments. BioResources. 2012, 7(2), 2506–2552. doi:10.15376/biores.7.2.2506-2552.
  • Czerwonatis, N. Spray coating – a contactless coating process for paper finishing. Ph.D thesis, Technical University Hamburg-Harburg, 2008.
  • TAPPI Useful Method. (2009). T 203cm-99: Alpha-, beta- and gamma-cellulose in pulp (Atlanta, GA, USA).
  • Fonseca, A. S.; Raabe, J.; Sartori, C. J.; Sartori, C.; Tonoli, G. H. D. Cellulose-Silica Aerogels From Eucalyptus Kraft pulp. In: II Congresso Brasileiro de Ciência e Tecnologia da Madeira, Belo Horizonte, 2015.
  • Tonoli, G. H. D.; Holtman, K. M.; Gregory, G.; Fonseca, A. S.; Wood, D.; Williams, T.; Sa, V.A.; Torres, L.; Klamczynski, A.; Orts, W. J. Properties of Cellulose Micro/Nanofibers Obtained From Eucalyptus Pulp Fiber Treated with Anaerobic Digestate and High Shear Mixing. Cellulose. 2016, 23, 1–18. doi:10.1007/s10570-016-0890-5.
  • Lipp C. W. Practical Spray Technology: Fundamentals and Practice; 1st edition. Lake Innovation LLC: Texas, 2012.
  • ASTM D645 / D645M-97. Standard Test Method for Thickness of Paper and Paperboard (Withdrawn 2010); ASTM International: West Conshohocken, PA, USA, 2007.
  • ASTM D646-96. Standard Test Method for Grammage of Paper and Paperboard (Mass Per Unit Area); ASTM International: West Conshohocken, PA, USA, 1996.
  • ASTM D828-97. Standard Test Method for Tensile Properties of Paper and Paperboard Using Constant-Rate-of-Elongation Apparatus (Withdrawn 2009); ASTM International: West Conshohocken, PA, USA, 2002.
  • ASTM E96 / E96M-16. Standard Test Methods for Water Vapor Transmission of Materials; ASTM International: West Conshohocken, PA, USA, 2016. doi:10.1520/E0096_E0096M-16.
  • ASTM D3985-05v e1. Standard Test Method for Oxygen Gas Transmission Rate Through Plastic Film and Sheeting Using a Coulometric Sensor; ASTM International: West Conshohocken, PA, USA, 2010.
  • Belini, U. L.; Filho, M. T.; Chagas, M. P.; Oliveira, J. T. S. Changes in the Anatomical Structure of Eucalyptus Grandis Wood Chips in Three Conditions Wood Chip Refining for Production of MDF Panel. Rev. Arvore. 2008, 32, 523–532. doi:10.1590/S0100-67622008000300013.
  • Brisola, S. H.; Demarco, D. Stem Anatomical Analysis of Eucalyptus Grandis, E. Urophyllae. Grandis x Urophylla: Wood Development and Its Industrial Importance. Scientia Forestalis. 2011, 39, 317–330.
  • De Campos, A.; Correa, A. C.; Cannella, D.; Eliangela de M Teixeira, E. M.; Marconcini, J. M.; Dufresne, A.; Mattoso, L. H. C.; Cassland, P.; Sanadi, A. R. Obtaining Nanofibers from Curauá and Sugarcane Bagasse Fibers Using Enzymatic Hydrolysis Followed by Sonication. Cellulose. 2013, 20(3), 1491–1500. doi:10.1007/s10570-013-9909-3.
  • Tanja Zimmermann, T.; Bordeanu, N.; Strub, E. Properties of Nanofibrillated Cellulose from Different Raw Materials and Its Reinforcement Potential. Carbohydr. Polym. 2010, 79(4), 1086–1093. doi:10.1016/j.carbpol.2009.10.045.
  • Zuluaga, R.; Putaux, JL.; Restrepo, A.; Mondragon, I.; Gañán, P. Cellulose Microfibrils From Banana Farming Residues: Isolation and Characterization. Cellulose. 2007, 14(6), 585–592. doi:10.1007/s10570-007-9118-z.
  • Hult, E. L.; Larsson, P. T.; Iversen, T. Cellulose Fibril Aggregation an Inherent Property of Kraft Pulps. Polymer. 2001, 42, 3309–3314. doi:10.1016/S0032-3861(00)00774-6.
  • Haavisto, S.; Liukkonen, J.; Jasberg, A.; Koponen, A.; Lille, M.; Salmela, J. Laboratory-Scale Pipe Rheometry: A Study of a Microfibrillated Cellulose Suspension. Paper Conference and Trade Show 2011, PaperCon 2011, 1, 704–717.
  • Rodionova, G.; Roudot, S.; Eriksen, Ø.; Männle, F.; Gregersen Ø. The Formation and Characterization of Sustainable Layered Films Incorporating Microfibrillated Cellulose (MFC). Bioresources 2012, 7, 3690–3700.
  • Henriksson, M.; Berglund, L. A. Structure and Properties of Cellulose Nanocomposite Films Containing Melamine Formaldehyde. J. Appl. Polym. Sci. 2007, 106, 2817–2824. doi:10.1002/app.26946.
  • Lee, K. Y.; Aitomäki, Y.; Berglund, L. A.; Oksman, K.; Bismarck, A. On the Use of Nanocellulose as Reinforcement in Polymer Matrix Composites. Compos. Sci. Technol. 2014, 105, 15–27. doi:10.1016/j.compscitech.2014.08.032.
  • Spence, K. L.; Venditti, R. A.; Rojas, O. J.; Pawlak, J. J.; Hubbe, M. A. Water Vapor Barrier Properties of Coated and Filled Microfibrillated Cellulose Composites Films. Bioresources. 2011, 6, 4370–4388.
  • Chinnan M. S.; Park, H. Effect of Plasticizer Level and Temperature on Water Vapor Transmission of Cellulose-based Edible Films. J. food Process Eng. 1995, 18(4), 417–429. doi:10.1111/j.1745-4530.1995.tb00375.x.
  • Hu, Y.; Topolkaraev, V.; Hiltner, A.; Baer, E. Measurement of Water Vapor Transmission Rate in Highly Permeable Films. J. Appl. Polym. Sci. 2000, 81(7), 1624–1633. doi:10.1002/app.1593.
  • Shorgen, R. Water Vapor Permeability of Biodegradable Polymers. J. Environ. Polym. Degrad. 1997, 5(2), 91–95. doi:10.1007/BF02763592.
  • Corte, H. Handbook of Paper Science, vol 2. Elsevier edition. In: Rance H. F.; Amsterdam, 1982; pp. 11–75.
  • Syverud, K.; Stenius, P. Strength and Barrier Properties of MFC Films. Cellulose. 2009, 16, 75–78. doi:10.1007/s10570-008-9244-2.
  • Fang, J. M.; Fowler, P. A.; Escrig, C.; Gonzalez, R.; Costa, J. A.; Chamudis, L. Development of Biodegradable Laminate Films Derived From Naturally Occurring Carbohydrate Polymers. Carbohydr. Polym. 2005, 60, 39–42. doi:10.1016/j.carbpol.2004.11.018.
  • Tuil, R. V. Converting Biobased Polymers into Food Packaging. In Biobased Packaging Materials for the Food Industry: Status and Perspectives, A European Concerted Action; Weber, C. J. (ed); KVL publications: Copenhagen, 2000; pp. 27–32.
  • Thomas, T. A.; Wiles, L. J.; Vergano, J. P. Water Vapor and Oxygen Barrier Properties of Corn Zein Coated Paper. Tappi J. 1998, 81, 171–176.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.