1,738
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Variation in Hemicellulose Structure and Assembly in the Cell Wall Associated with the Transition from Earlywood to Latewood in Cryptomeria japonica

, , , , , , , , & show all

References

  • Fujisawa, Y.; Ohta, S.; Nishimura, K.; Tajima, M. Wood Characteristics and Genetic Variations in Sugi (Cryptomeria Japonica): Clonal Differences and Correlations between Locations of Dynamic Moduli of Elasticity and Diameter Growths in Plus-Tree Clones. Mokuzai Gakkaishi. 1992, 38(7), 638–644.
  • Fujisawa, Y.; Ohta, S.; Tajima, M. Wood Characteristics and Genetic Variations in Sugi (Cryptomeria Japonica), 2: Variation in Growth Ring Components Among Plus-Trees Clones and Test Stands. Mokuzai Gakkaishi. 1992, 39(8), 875–882.
  • Hirakawa, Y.; Fujisawa, Y. The Relationships between Microfibril Angles of the S2 Layer and Latewood Tracheid Lengths in Elite Sugi Tree (Cryptomeria Japonica) Clones. Mokuzai Gakkaishi. 1995, 41(2), 123–131.
  • Hirakawa, Y.; Yamashita, K.; Nakada, R.; Fujisawa, Y. The Effects of S2 Microfibril Angles of Latewood Tracheids and Densities on Modulus of Elasticity Variations of Sugi Tree (Cryptomeria Japonica) Logs. Mokuzai Gakkaishi. 1997, 43(9), 717–724.
  • Terashima, N.; Yoshida, M. Observation of Formation Process of Macromolecular Lignin in the Cell Wall by Electron Microscope IV. Formation of Hemicellulose-Lignin Module in Black Pine Tracheid. Proc. Annu. Meet. Japan Wood Res. Soc. pA005, 2006.
  • Terashima, N.; Kokei, K.; Kojima, M.; Yoshida, M.; Yamamoto, H.; Westermark, U. Nanostructural Assembly of Cellulose, Hemicellulose, and Lignin in Middle Layer of Secondary Wall of Ginkgo Tracheid. J. Wood Sci. 2009, 55, 409–416. doi:10.1007/s10086-009-1049-x.
  • Yokoyama, T.; Kadla, J. F.; Chang, H. M. Microanalytical Method for Characterization of Fiber Components and Morphology of Wood Plants. J. Agric. Food Chem. 2002, 50, 1040–1044. doi:10.1021/jf011173q.
  • Yeh, T. F.; Chang, H. M.; Kadla, J. F. Rapid Prediction of Solid Wood Lignin Content Using Transmittance Near-Infrared Spectroscopy. J. Agric. Food Chem. 2004, 52, 1435–1439. doi:10.1021/jf034874r.
  • Rao, P.; Pattabiraman, T. N. Reevaluation of the Phenol-Sulfuric Acid Reaction for the Estimation of Hexoses and Pentoses. Anal. Biochem. 1989, 181(1), 18–22. doi:10.1016/0003-2697(89)90387-4.
  • Nakamura, A.; Hatanaka, C.; Nagamatsu, Y. Ultraviolet Spectrometric Determination of Neutral Monosaccharides by HPLC with Ethanolamine. Biosci., Biotechnol., Biochem. 1999, 63(7), 178–180.
  • Yamasaki, T.; Enomoto, A.; Kato, A.; Ishi, T.; Shimizu, K. Structural Unit of Xylans from Sugi (Cryptomeria Japonica) and Hinoki (Chamaecyparis Obtuse). J. Wood Sci.2011, 57, 76–84. doi:10.1007/s10086-010-1139-9.
  • Easty, D. B.; Malcom, E. W. Estimation of Pulping Yield in Continuous Digester from Carbohydrate and Lignin Determination. Tappi J. 1982, 65(12), 78–80.
  • Jones, P. D.; Schimleck, R. L.; Peter, F. G.; Daniels, F. R.; Alexander, C. Nondestructive Estimation of Wood Chemical Composition of Sections of Radial Wood Strips by Diffuse Reflectance Near Infrared Spectroscopy. Wood Sci. Technol. 2006, 40, 709–720. doi:10.1007/s00226-006-0085-6.
  • Harwood, V. D. Studies on the Cell Wall Polysaccharides of Pinus Radiata. I. Isolation and Structure of a Xylan. Svensk Papperstidn. 1972, 75, 207–212.
  • Harwood, V. D. Cell Wall Polysaccharides of Pinus Radiata. II. Structure of a Glucomannan. Svensk Papperstidn. 1973, 76, 377–379.
  • Kibblewhite, R. P.; Suckling, I. D.; Evans, R.; Grace, J. C.; Riddell, M. J. C. Lignin and Carbohydrate Variation with Earlywood, Latewood, and Compression Wood Content of Bent and Straight Ramets of a Radiata Pine Clone. Holzforschung. 2010, 64, 101–109. doi:10.1515/hf.2010.016.
  • Hashi, M.; Teratani, F.; Miyazaki, K. Studies on Hemicellulose. 2. Purification of Galactoglucomannan of Japanese Larch (Larix Leptolepis Gord). Mokuzai Gakkaishi. 1970, 16, 37–41.
  • Brink, D. L.; Pohlman, A. A. Wood and Pulp Analysis by Fractionation into Component Polysaccharides. Tappi. 1972, 55, 380–388.
  • Blumenkrantz, N.; Asboe-Hansen, G. New Method for Quantitative Determination of Uronic Acids. Anal. Biochem. 1973, 54, 484–489. doi:10.1016/0003-2697(73)90377-1.
  • Thornber, J. P.; Northcote, D. H. Change in the Chemical Composition of Cambial Cell During its Differentiation into Xylem and Phloem Tissue in Trees. 3. Xylan, Glucomannan and α-Cellulose Fractions. Biochem. J. 1962, 32, 340–346. doi:10.1042/bj0820340.
  • Kato, Y.; Iki, K.; Matsuda, K. Characterization of Acidic Arabinoxylan from Cell Walls of Immature Barley Plants. Agric. Biol. Chem. 1988, 52(2), 533–538.
  • Brown, D. M.; Zhang, Z.; Stephens, E.; Dupree, P.; Turner, S. R. Characterization of IRX10 and IRX10-Like Reveals an Essential Role in Glucuronoxylan Biosynthesis in Arabidopsis. Plant J. 2009, 57, 732–746. doi:10.1111/j.1365-313X.2008.03729.x.
  • Brown, D. M.; Wightman, R.; Zhang, Z.; Gomez, L.D.; Atanassov, I.; Bukowski, J. P.; Tryfona, T.; McQueen-Mason, S. J.; Dupree, P.; Turner, S. R. Arabidopsis Gens IRREGULAR XYLEM (IRX15) and IRX15L Encode DUF579-Containing Proteins That are Essential for Normal Xylan Deposition in the Secondary Cell Wall. Plant J. 2011, 66, 401–413. doi:10.1111/j.1365-313X.2011.04501.x.
  • Fujisawa, Y.; Ohta, S.; Akashi, T. Wood Characteristics and Genetic Variationin Sugi (Cryptomeria Japonica) 4. Variation in Growth Ring Features of Plus-Tree Clones in Relationto the Initial Planting Space. Mokuzai Gakkaishi. 1995, 41, 631–639.
  • Kubo, T.; Jyudo, S. Some Characteristics of the Annual Ring Structure Related to Wood Density Variation in Sugi (Cryptomeria Japonica). Mokuzai Gakkaishi. 1996, 42, 1156–1162.