179
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Surface Energy and Lewis Acid-base Characteristics of Lignocellulosic Fibers upon Modification by Chemical Vapor Deposition of Trichloromethylsilane: An Inverse Gas Chromatography Study

, , &

REFERENCES

  • Kalia, S.; Dufresne, A.; Cherian, B. M.; Kaith, B. S.; Avérous, L.; Njuguna, J.; Nassiopoulos, E. Cellulose-Based Bio- and Nanocomposites: A Review. Int. J. Polym. Sci. 2011, 2011, 1–35, article ID 837875. DOI: 10.1155/2011/837875.
  • Sain, M.; Li, H. Enhancement of Strength Properties of Mechanical Pulps. J. Wood Chem. Technol. 2002, 2, 187–197. DOI: 10.1081/WCT-120016257.
  • Dufresne, A.; Belgacem, M. N. Cellulose-Reinforced Composites: From Micro- to Nanoscale. Polímeros 2013, 23, 277–286.
  • Navarro, F.; Dávalos, F.; Denes, F.; Cruz, L. E.; Young, R.A.; Ramos, J. Highly Hydrophobic Sisal Chemithermomechanical Pulp (CTMP) Paper by Fluorotrimethylsilane Plasma Treatment. Cellulose 2003, 10, 411–424. DOI: 10.1023/A:1027381810022.
  • Gellerstedt, F.; Gatenholm, P. Surface Properties of Lignocellulosic Fibers Bearing Carboxylic Groups. Cellulose 1999, 6, 103–121. DOI: 10.1023/A:1009239225050.
  • Belgacem, M. N.; Gandini, A. Surface Modification of Cellulose Fibers. In Monomers, Polymers and Composites from Renewable Resources; Belgacem, M. N., Gandini, A., Eds.; Elsevier Science, Oxford, UK, Chapter 18, 2008; pp 385–400.
  • Gandini, A.; Belgacem, M. N. The Surface and In-Depth Modification of Cellulose Fibers. Adv. Polym. Sci. 2016, 271, 169–206.
  • Li, P.; Li, H.; Yang, J.; Meng, Y. Facile Fabrication of Superhydrophobic Paper with Excellent Water Repellency and Moisture Resistance by Phase Separation. Bioresources 2016, 11, 6552–6565. DOI: 10.15376/biores.11.3.6552-6565.
  • Mirvakili, M. N.; Hatzikiriakos, S. G.; Englezos, P. Superhydrophobic Lignocellulosic Wood Fiber/Mineral Networks. ACS Appl. Mater. Interfaces 2013, 5, 9057–9066. DOI: 10.1021/am402286x.
  • Li, J.; Sun, Q.; Yao, Q.; Wang, J.; Han, S.; Jin, C. Fabrication of Robust Superhydrophobic Bamboo Based on ZnO Nanosheet Networks with Improved Water-, UV-, and Fire-Resistant Properties. J. Nanomaterials 2015, 2015, 1–9. article ID 431426.
  • Tang, Z.; Xie, L.; Hess, D. W.; Breedveld, V. Fabrication of Amphiphobic Softwood and Hardwood by Treatment With Non-fluorinated Chemicals. Wood Sci. Technol. 2017, 51, 97–113. DOI: 10.1007/s00226-016-0854-9.
  • Tejado, A.; Alam, M. N.; Chen, W. C.; van de Ven, T. G. M. Superhydrophobic Foam-Like Cellulose Made of Hydrophobized Cellulose Fibres. Cellulose 2014, 21, 1735–1743.
  • Gamelas, J. A. F.; Salvador, A.; Hidalgo, J.; Ferreira, P. J.; Tejado, A. Unique Combination of Surface Energy and Lewis Acid-base Characteristics of Superhydrophobic Cellulose Fibres. Langmuir 2017, 33, 927–935. DOI: 10.1021/acs.langmuir.6b03970.
  • Artus, G. R. J; Jung, S.; Zimmermann, J.; Gautschi, H.-P.; Marquardt, K.; Seeger, S. Silicone Nanofilaments and Their Application as Superhydrophobic Coatings. Adv. Mater. 2006, 18, 2758–2762. DOI: 10.1002/adma.200502030.
  • Li, S.; Xie, H.; Zhang, S.; Wang, X. Facile Transformation of Hydrophilic Cellulose into Superhydrophobic Cellulose. Chem. Commun. 2007, 4857–4859. DOI: 10.1039/b712056g.
  • Tang, Z.; Li, H.; Hess, D. W.; Breedveld, V. Effect of Chain Length on the Wetting Properties of Alkyltrichlorosilane Coated Cellulose-Based Paper. Cellulose 2016, 23, 1401–1413. DOI: 10.1007/s10570-016-0877-2.
  • Cunha, A. G.; Freire, C.; Silvestre, A.; Neto, C. P.; Gandini, A.; Belgacem, M. N.; Chaussy, D.; Beneventi, D. Preparation of Highly Hydrophobic and Lipophobic Cellulose Fibers by a Straightforward Gas-Solid Reaction. J. Colloid Interface Sci. 2010, 344, 588–595. DOI: 10.1016/j.jcis.2009.12.057.
  • Liao, Q.; Su, X.; Zhu, W.; Hua, W.; Qian, Z.; Liu, L.; Yao, J. Flexible and Durable Cellulose Aerogels for Highly Effective Oil/Water Separation. RSC Adv. 2016, 6, 63773–63781. DOI: 10.1039/C6RA12356B.
  • Gardner, D. J.; Oporto, G. S.; Mills, R.; Samir, M. A. S. A. Adhesion and Surface Issues in Cellulose and Nanocellulose. J. Adhes. Sci. Technol. 2008, 22, 545–567. DOI: 10.1163/156856108X295509.
  • Santos, J. M. R. C. A.; Guthrie, J. T. Analysis of Interactions in Multicomponent Polymeric Systems: The Key-Role of Inverse Gas Chromatography. Mater. Sci. Eng. R. 2005, 50, 79–107. DOI: 10.1016/j.mser.2005.07.003.
  • Gamelas, J. A. F. The Surface Properties of Cellulose and Lignocellulosic Materials Assessed by Inverse Gas Chromatography: A Review. Cellulose 2013, 20, 2675–2693. DOI: 10.1007/s10570-013-0066-5.
  • Gauthier, H.; Coupas, A.; Villemagne, P.; Gauthier, R. Physicochemical Modifications of Partially Esterified Cellulose Evidenced by Inverse Gas Chromatography. J. Appl. Polym. Sci. 1998, 69, 2195–2203. DOI: 10.1002/(SICI)1097-4628(19980912)69:11%3c2195::AID-APP11%3e3.0.CO;2-Z.
  • Jandura, P.; Riedl, B.; Kokta, B. V. Inverse Gas Chromatography Study on Partially Esterified Paper Fiber. J. Chromatogr. A 2002, 969, 301–311. DOI: 10.1016/S0021-9673(02)00892-0.
  • Trejo-O'Reilly, J. A.; Cavaille, J. Y.; Belgacem, M. N.; Gandini, A. Surface Energy and Wettability of Modified Cellulosic Fibres for Use in Composite Materials. J. Adhesion 1998, 67, 359–374. DOI: 10.1080/00218469808011117.
  • Botaro, V. R.; Gandini, A. Chemical Modification of the Surface of Cellulosic Fibres. 2. Introduction of Alkenyl Moieties via Condensation Reactions Involving Isocyanate Functions. Cellulose 1998, 5, 65–78. DOI: 10.1023/A:1009216729686.
  • Felix, J. M.; Gatenholm, P.; Schreiber, H. P. Controlled Interactions in Cellulose-Polymer Composites. 1: Effect on Mechanical Properties. Polym. Compos. 1993, 14, 449–457. DOI: 10.1002/pc.750140602.
  • Matuana, L. M.; Woodhams, R. T.; Balatinecz, J. J.; Park, C. B. Influence of Interfacial Interactions on the Properties of PVC/Cellulosic Fiber Composites. Polym. Compos. 1998, 19, 446–455. DOI: 10.1002/pc.10119.
  • Matuana, L. M.; Balatinecz, J. J.; Park, C. B.; Woodhams, R. T. Surface Characteristics of Chemically Modified Newsprint Fibers Determined by Inverse Gas Chromatography. Wood Fiber Sci. 1999, 31, 116–127.
  • Pettersen, R. C. The Chemical Composition of Wood. In The Chemistry of Solid Wood; Rowell, R. M., Ed.; American Chemical Society, Washington, D.C., Chapter 2, 1984; pp 57–126.
  • Kamdem, D. P.; Riedl, B. Inverse Gas Chromatography of Lignocellulosic Fibers Coated With a Thermosetting Polymer: Use of Peak Maximum and Conder and Young Methods. J. Colloid Interface Sci. 1992, 150, 507–516. DOI: 10.1016/0021-9797(92)90219-C.
  • Mukhopadhyay, P.; Schreiber, H. P. Aspects of Acid–Base Interactions and Use of Inverse Gas Chromatography. Colloids Surf. A. 1995, 100, 47–71. DOI: 10.1016/0927-7757(95)03137-3.
  • Belgacem, M. N.; Czeremuszkin, G.; Sapieha, S.; Gandini, A. Surface Characterization of Cellulose Fibres by XPS and Inverse Gas Chromatography. Cellulose 1995, 2, 145–157. DOI: 10.1007/BF00813015.
  • Shen, W.; Parker, I. H. Surface Composition and Surface Energetics of Various Eucalypt Pulps. Cellulose 1999, 6, 41–55. DOI: 10.1023/A:1009268102404.
  • Schultz, J.; Lavielle, L.; Martin, C. The Role of the Interface in Carbon Fibre-Epoxy Composites. J. Adhesion 1987, 23, 45–60. DOI: 10.1080/00218468708080469.
  • Sasa, B.; Odon, P.; Stane, S.; Julijana, K. Analysis of Surface Properties of Cellulose Ethers and Drug Release From Their Matrix Tablets. Eur. J. Pharm. Sci. 2006, 27, 375–383. DOI: 10.1016/j.ejps.2005.11.009.
  • Rani, P. R.; Ramanaiah, S.; Reddy, K. S. Lewis Acid-Base Properties of Cellulose Acetate Butyrate by Inverse Gas Chromatography. Surf. Interface Anal. 2011, 43, 683–688. DOI: 10.1002/sia.3514.
  • Harding, P. H.; Berg, J. C. The Role of Adhesion in the Mechanical Properties of Filled Polymer Composites. J. Adhes. Sci. Technol. 1997, 11, 471–493. DOI: 10.1163/156856197X00039.
  • Dorris, G. M.; Gray, D. G. Adsorption of n-Alkanes at Zero Surface Coverage on Cellulose Paper and Wood Fibres. J Colloid Interface Sci. 1980, 77, 353–362. DOI: 10.1016/0021-9797(80)90304-5.
  • Pedrosa, J.; Gamelas, J. A. F.; Lourenço, A. F.; Ferreira, P. J. Surface Properties of Calcium Carbonate Modified with Silica by Sol-Gel Method. Colloids Surf. A. 2016, 497, 1–7. DOI: 10.1016/j.colsurfa.2016.02.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.