183
Views
10
CrossRef citations to date
0
Altmetric
Short Communication

Selective Depolymerization of Lignin: Assessment of Yields of Monomeric Products

Pages 409-415 | Received 04 Mar 2018, Accepted 04 Jul 2018, Published online: 08 Oct 2018

REFERENCES

  • Rinaldi, R.; Jastrzebski, R.; Clough, M. T.; Ralph, J.; Kennema, M.; Bruijnincx, P. C. A.; Weckhuysen, B. M. Paving the way for lignin valorisation: Recent advances in bioengineering, biorefining and catalysis. Angewandte Chemie International Edition 2016, 55, 8164–8215. DOI: 10.1002/ange.201510351.
  • Galkin, M. V.; Samec, J. S. M. Lignin valorization through catalytic lignocellulose fractionation: A fundamental platform for the future biorefinery. ChemSusChem 2016, 9(13), 1544–1558. DOI: 10.1002/cssc.201600237.
  • Kärkäs, M. D.; Matsuura, B. S.; Monos, T. M.; Magallanes, G.; Stephenson, C. R. J. Transition-metal catalyzed valorization of lignin: The key to a sustainable carbon-neutral future. Organic & Biomolecular Chemistry 2016, 14(6), 1853–1914. DOI: 10.1039/C5OB02212F.
  • Sanyoto, B.; Dwiatmoko, A. A.; Choi, J.-W.; Ha, J.-M.; Suh, D.-J.; Kim, C. S.; Lim, J.-C. Catalytic depolymerization of lignin using supported Pt nanoparticle catalysts. Journal of Nanoscience and Nanotechnology 2016, 16(5), 4570–4575. DOI: 10.1166/jnn.2016.10982.
  • Sanyoto, B.; Dwiatmoko, A. A.; Choi, J.-W.; Ha, J.-M.; Suh, D.-J.; Kim, C. S.; Lim, J.-C. Highly dispersed Pt nanoparticles for the production of aromatic hydrocarbons by the catalytic degrading of alkali lignin. Journal of Nanoscience and Nanotechnology 2016, 16(5), 4565–4569. DOI:10.1166/jnn.2016.10981.
  • Evtuguin, D. V.; Amado, F. M. L. Application of electrospray ionization mass spectrometry to the elucidation of the primary structure of lignin. Macromolecular Bioscience 2003, 3(7), 339–343.
  • Gellerstedt, G.; Henriksson, G. Lignins: Major Sources, Structure and Properties. In Monomers, Polymers and Composites from Renewable Resources; Belgacem, M. N., Gandini, A. Eds.; Elsevier: Amsterdam, 2008, 201–224.
  • Crestini, C.; Melone, F.; Sette, M.; Saladino, R. Milled wood lignin: A linear oligomer. Biomacromolecules 2011, 12(11), 3928–3935. DOI: 10.1021/bm200948r.
  • Crestini, C. Lignin structure: A revisitation of current paradigms through NMR analysis. Proceedings of 13th European Workshop on Lignocellulosics and Pulp, June 24–27, Seville, Spain 2014, 59–62.
  • Evstigneyev, E. I. Electrochemical reactions of lignin: A review. Khimija Rastitel′nogo Syr′ja (Chemistry of Plant Resources) 2014, 3, 5–42.
  • Evstigneyev, E.; Maiyorova, H.; Platonov, A. Lignin functionalization and reactivity in alkaline pulping. Proceedings of the 6th International Symposium оn Wood and Pulping Chemistry. Melbourne, 1991, 2, 131–138.
  • Sakakibara, A. Chemistry of Lignin. In Wood and Cellulosic Chemistry; Hon, D.N.-S., Shirashi, N., Eds.; New York: Marce Dekker Inc, 1991, 111–175.
  • Nimz, H. H. Analytical methods in wood, pulping and bleaching chemistry. Proceedings of 8th International Symposium on Wood and Pulping Chemisty. Helsinki. 1995, 1, 1–32.
  • Capanema, E. A.; Balakshin, M. Y.; Kadla, J. F. A comprehensive approach for quantitative lignin characterization by NMR spectroscopy. Journal of Agricultural and Food Chemistry 2004, 52(7), 1850–1860. DOI: 10.1021/jf035282b.
  • Evstigneyev, E. I.; Kalugina, A. V.; Ivanov, A. Y.; Vasilyev, A. V. Contents of α-O-4 and β-O-4 bonds in native lignin and isolated lignin preparations. Journal of Wood Chemistry and Technology 2017, 37(4), 294–306. DOI: 10.1080/02773813.2017.1297832.
  • Capanema, E. A.; Balakshin, M. Y.; Kadla, J. F. Quantitative characterization of a hardwood milled wood lignin by NMR spectroscopy. Journal of Agricultural and Food Chemistry 2005, 53(25), 9639–9649. DOI: 10.1021/jf0515330.
  • Pepper, J. M.; Lee, Y. W. Lignin and related compounds. I. A comparative study of catalysts for lignin hydrogenolysis. Canadian Journal of Chemistry 1969, 47(5), 723–727. DOI:org/10.1139/v69-118.
  • Nahum, L. S. Delignification of wood by hydrogenation in presence of dicobalt octacarbonyl. Industrial & Engineering Chemistry Product Research and Development 1965, 4(2), 71–74. DOI: 10.1021/i360014a003.
  • Galkin, M. V.; Samec, J. S. M. Selective route to 2-propenyl aryls directly from wood by a tandem organosolv and palladium-catalysed transfer hydrogenolysis. ChemSusChem 2014, 7(8), 2154–2158. DOI: 10.1002/cssc.201402017.
  • Torr, K. M.; van de Pas, D. J.; Cazeils, E.; Suckling, I. D. Mild hydrogenolysis of in-situ and isolated pinus radiata lignins. Bioresource Technology 2011, 102(16), 7608–7611. DOI: 10.1016/j.biortech.2011.05.040.
  • Parsell, T.; Yohe, S.; Degenstein, J.; Jarrell, T.; Klein, I.; Gencer, E.; … Abu-Omar, M. M. A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass. Green Chemistry 2015, 17(3), 1492–1499. DOI: 10.1039/C4GC01911C.
  • Liu, Y.; Chen, L.; Wang, T.; Zhang, Q.; Wang, C.; Yan, J.; Ma, L. One-pot catalytic conversion of raw lignocellulosic biomass into gasoline alkanes and chemicals over LiTaMoO6 and Ru/C in aqueous phosphoric acid. ACS Sustainable Chemistry & Engineering 2015, 3(8), 1745–1755. DOI: 10.1021/acssuschemeng.5b00256.
  • Van den Bosch, S.; Schutyser, W.; Koelewijn, S.-F.; Renders, T.; Courtin, C. M.; Sels, B. F. Tuning the lignin oil OH-content with Ru and Pd catalysts during lignin hydrogenolysis on birch wood. Chemical Communications 2015, 51(67), 13158–13161. DOI: 10.1039/c5cc04025f.
  • Yan, N.; Zhao, C.; Dyson, P. J.; Wang, C.; Liu, L.; Kou, Y. Selective degradation of wood lignin over noble-metal catalysts in a two-step process. ChemSusChem 2008, 1(7), 626–629. DOI: 10.1002/cssc.200800080.
  • Li, C.; Zheng, M.; Wang, A.; Zhang, T. One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose, hemicellulose and lignin. Energy & Environmental Science 2012, 5(4), 6383–6390. DOI: 10.1039/C1EE02684D.
  • Song, Q.; Wang, F.; Cai, J.; Wang, Y.; Zhang, J.; Yu, W.; Xu, J. Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation–hydrogenolysis process. Energy & Environmental Science 2013, 6(3), 994–1007. DOI: 10.1039/C2EE23741E.
  • Van den Bosch, S.; Schutyser, W.; Vanholme, R.; Driessen, T.; Koelewijn, S. F.; Renders, T.; … Sels, B. F. Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy & Environmental Science 2015, 8(6), 1748–1763. DOI: 10.1039/C5EE00204D.
  • Galkin, M. V.; Dahlstrand, C.; Samec, J. S. M. Mild and robust redox-neutral Pd/C-catalyzed lignol β-O-4′ bond cleavage through a low-energy-barrier pathway. ChemSusChem 2015, 8(13), 2187–2192. DOI: 10.1002/cssc.201500117.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.