209
Views
6
CrossRef citations to date
0
Altmetric
Articles

Characterization of Silver fir Wood Decay Classes Using Sugar Metabolites Detected with Ion Chromatography

, , , , ORCID Icon &

REFERENCES

  • Zhou, L.; Dai, L. M.; Gu, H. Y.; Zhong, L. Review on the decomposition and influence factors of coarse woody debris in Forest ecosystem. Journal of Forestry Research 2007, 18(1), 48–54.
  • Fravolini, G.; Egli, M.; Derungs, C.; Cherubini, P.; Ascher-Jenull, J.; Gómez-Brandón, M.; Bardelli, T.; Tognetti, R.; Lombardi, F.; Marchetti, M. Soil attributes and microclimate are important drivers of initial deadwood decay in Sub-alpine Norway spruce forests. Science of the Total Environment 2016, 569–570, 1064–1076.
  • Lombardi, F.; Lasserre, B.; Tognetti, R.; Marchetti, M. Deadwood in relation to stand management and forest type in Central apennines (Molise, Italy). Ecosystems 2008, 11(6), 882–894.
  • Wiebe, S. A.; Morris, D. M.; Luckai, N. J.; Reid, D. E. The influence of coarse woody debris on soil carbon and nutrient pools 15 years after clearcut harvesting in black spruce-dominated stands in northwestern Ontario, Canada. Écoscience 2014, 21(1), 11–20.
  • Petrillo, M.; Cherubini, P.; Sartori, G.; Abiven, S.; Ascher, J.; Bertoldi, D.; Camin, F.; Barbero, A.; Larcher, R.; Egli, M. Decomposition of Norway spruce and European larch coarse woody debris (CWD) in relation to different elevation and exposure in an alpine setting. iForest - Biogeosciences and Forestry 2016, 9(1), 154–164.
  • Brown, S. Measuring carbon in forests: Current status and future challenges. Environmental Pollution (Barking, Essex : 1987) 2002, 116(3), 363–372.
  • Bobiec, A. Living stands and dead wood in the białowieża Forest: suggestions for restoration management. Forest Ecology and Management 2002, 165(1–3), 125–140.
  • Kueppers, L. M.; Southon, J.; Baer, P.; Harte, J. Dead wood biomass and turnover time, measured by radiocarbon, along a subalpine elevation gradient. Oecologia 2004, 141(4), 641–651.
  • Fravolini, G.; Tognetti, R.; Lombardi, F.; Egli, M.; Ascher-Jenull, J.; Arfaioli, P.; Bardelli, T.; Cherubini, P.; Marchetti, M. Quantifying decay progression of deadwood in Mediterranean Mountain forests. Forest Ecology and Management 2018, 408, 228–237.
  • Elling, W.; Dittmar, C.; Pfaffelmoser, K.; Rötzer, T. Dendroecological assessment of the complex causes of decline and recovery of the growth of silver fir (abies Alba mill.) in Southern Germany. Forest Ecology and Management 2009, 257(4), 1175–1187.
  • Gazol, A.; Camarero, J. J.; Gutiérrez, E.; Popa, I.; Andreu-Hayles, L.; Motta, R.; Nola, P.; Ribas, M.; Sangüesa-Barreda, G.; Urbinati, C.; Carrer, M. Distinct effects of climate warming on populations of silver fir (abies Alba) across Europe. Journal of Biogeography 2015, 42(6), 1150–1162.
  • Zell, J.; Kändler, G.; Hanewinkel, M. Predicting constant decay rates of coarse woody debris—a meta-analysis approach with a mixed model. Ecological Modeling 2009, 220(7), 904–912.
  • Hunter, M. L. Wildlife, Forests and Forestry: Principles of Managing Forests for Biological Diversity; Englewood Cliffs, NJ, 1990; 370 pp.
  • Sandström, F.; Petersson, H.; Kruys, N.; Ståhl, G. Biomass conversion factors (density and carbon concentration) by decay classes for dead wood of Pinus sylvestris, picea abies and betula spp. in boreal forests of Sweden. Forest Ecology and Management 2007, 243(1), 19–27.
  • Paletto, A.; Tosi, V. Deadwood density variation with decay class in seven tree species of the Italian alps. Scandinavian Journal of Forest Research 2010, 25(2), 164–173.
  • Ganjegunte, G. K.; Condron, L. M.; Clinton, P. W.; Davis, M. R.; Mahieu, N. Decomposition and nutrient release from radiata pine (pinus radiata) coarse woody debris. Forest Ecology and Management 2004, 187(2–3), 197–211.
  • Bütler, R.; Patty, L.; Le Bayon, R. C.; Guenat, C.; Schlaepfe, R. Log decay of Picea abies in the Swiss Jura mountains of Central Europe. Forest Ecology and Management 2007, 2(242), 791–799.
  • Lombardi, F.; Cherubini, P.; Tognetti, R.; Cocozza, C.; Lasserre, B.; Marchetti, M. Investigating biochemical processes to assess deadwood decay of beech and silver fir in Mediterranean Mountain forests. Annals of Forest Science 2013, 70(1), 101–111.
  • Sandhu, A. P. S.; Randhawa, G. S.; Dhugga, K. S. Plant cell wall matrix polysaccharide biosynthesis. Molecular Plant 2009, 2(5), 840–850.
  • Li, S.; Bashline, L.; Lei, L.; Gu, Y. Cellulose Synthesis and Its Regulation. In The Arabidopsis Book; Rockville, MD: American Society of Plant Biologists 2014, 12, e0169.
  • Menon, V.; Prakash, G.; Rao, M. Value added products from hemicellulose: biotechnological perspective. Global Journal of Biochemistry 2010, 1(1), 36–67.
  • Pettersen, R. C.; Schwandt, V. H.; Effland, M. J. An analysis of the wood sugar assay using HPLC: A comparison with paper chromatography. Journal of Chromatographic Science 1984, 22(11), 478–484.
  • Green, F.; Larsen, M. J.; Winandy, J. E.; Highley, T. L. Role of oxalic acid in incipient brown-rot decay. Material and Organismen 1991, 26(3), 191–213.
  • Chen, H. 2014. Chemical composition and structure of natural lignocellulose. Biotechnology of Lignocellulose; Springer: Dordrecht, 25–71.
  • Kleman-Leyer, K.; Agosin, E.; Conner, A. H.; Kirk, T. K. Changes in molecular size distribution of cellulose during attack by white rot and brown rot fungi. Applied and Environmental Microbiology 1992, 58(4), 1266–1270.
  • Fackler, K.; Stevanic, J. S.; Ters, T.; Hinterstoisser, B.; Schwanninger, M.; Salmén, L. Localisation and characterisation of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy. Enzyme and Microbial Technology 2010, 47(6), 257–267.
  • Hu, Z.; Xu, C.; McDowell, N. G.; Johnson, D. J.; Wang, M.; Luo, Y.; Zhou, X.; Huang, Z. Linking microbial community composition to C loss rates during wood decomposition. Soil Biology and Biochemistry 2017, 104, 108–116.
  • Carlos, C.; Fan, H.; Currie, C. R. Substrate shift reveals roles for members of bacterial consortia in degradation of plant cell wall polymers. Frontiers in Microbiology 2018, 9, 364–364.
  • Goodell, B. Brown-rot fungal degradation of wood: Our evolving view. Wood Deterioration and Preservation, Advances in Our Changing World, Orono: Maine, 2003, 97–118.
  • Arantes, V.; Milagres, A. M.; Filley, T. R.; Goodell, B. Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic fenton-based reactions. Journal of Industrial Microbiology & Biotechnology 2011, 38(4), 541–555.
  • Sindhu, R.; Binod, P.; Pandey, A. Biological pretreatment of lignocellulosic biomass – an overview. Bioresource Technology 2016, 199, 76–82.
  • Green, F.; Highley, T. L. (1997). Mechanism of brown-rot decay: paradigm or paradox. International Biodeterioration and Biodegradation 1997, 39(2–3), 113–124.
  • Schilling, J. S.; Ai, J.; Blanchette, R. A.; Duncan, S. M.; Filley, T. R.; Tschirner, U. W. Lignocellulose modifications by brown rot fungi and their effects, as pretreatments, on cellulolysis. Bioresource Technology 2012, 116, 147–154.
  • Pérez, J.; Munoz-Dorado, J.; de la Rubia, T. D. L. R.; Martinez, J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. International Microbiology: The Official Journal of the Spanish Society for Microbiology 2002, 5(2), 53–63.
  • Kuhad, R. C.; Singh, A.; Eriksson, K. E. Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Biotechnology in the Pulp and Paper Industry; Berlin: Heidelberg, 1997; 45–125.
  • Lynd, L. R.; Weimer, P. J.; Van Zyl, W. H.; Pretorius, I. S. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews 2002, 66(3), 506–577.
  • Kaar, W. E.; Cool, L. G.; Merriman, M. M.; Brink, D. L. The complete analysis of wood polysaccharides using HPLC. Journal of Wood Chemistry and Technology 1991, 11(4), 447–463.
  • Pettersen, R. C. Wood sugar analysis by anion chromatography. Journal of Wood Chemistry and Technology 1991, 11(4), 495–501.
  • Davis, M. W. A rapid modified method for compositional carbohydrate analysis of lignocellulosics by high pH anion-exchange chromatography with pulsed amperometric detection (HPAEC/PAD). Journal of Wood Chemistry and Technology 1998, 18(2), 235–252.
  • Raessler, M.; Wissuwa, B.; Breul, A.; Unger, W.; Grimm, T. Chromatographic analysis of major non-structural carbohydrates in several wood species–an analytical approach for higher accuracy of data. Analytical Methods 2010, 2(5), 532–538.
  • Medeiros, P. M.; Simoneit, B. R. Analysis of sugars in environmental samples by gas chromatography-mass spectrometry. Journal of Chromatography A 2007, 1141(2), 271–278.
  • Sluiter, J. B.; Ruiz, R. O.; Scarlata, C. J.; Sluiter, A. D.; Templeton, D. W. Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. Journal of Agricultural and Food Chemistry 2010, 58(16), 9043.
  • Suksom, W.; Wannachai, W.; Boonchiangma, S.; Chanthai, S.; Srijaranai, S. Ion chromatographic analysis of monosaccharides and disaccharides in raw sugar. Chromatographia 2015, 78(13–14), 873–879.
  • De Goeij, S. Quantitative analysis methods for sugars. Literature Thesis, Universiteit van Amsterdam, 2013.
  • Malacarne, M.; Nardin, T.; Bertoldi, D.; Nicolini, G.; Larcher, R. Verifying the botanical authenticity of commercial tannins through sugars and simple phenols profiles. Food Chemistry 2016, 206, 274–283.
  • Rocklin, R. D.; Pohl, C. A. Determination of carbohydrates by anion exchange chromatography with pulsed amperometric detection. Journal of Liquid Chromatography 1983, 6(9), 1577–1590.
  • Corradini, C.; Cavazza, A.; Bignardi, C. High-performance anion-exchange chromatography coupled with pulsed electrochemical detection as a powerful tool to evaluate carbohydrates of food interest: principles and applications. International Journal of Carbohydrate Chemistry 2012, 2012, 1.
  • Gamache, P. H.; McCarthy, R. S.; Freeto, S. M.; Asa, D. J.; Woodcock, M. J.; Laws, K.; Cole, R. O. HPLC analysis of nonvolatile analytes using charged aerosol detection. LCGC Europe 2005, 18(6), 345–354.
  • Secretariat EURACHEM. Accreditation for Chemical Laboratories. Teddington: London, 1993.
  • Loader, N. J.; Robertson, I.; Barker, A. C.; Switsur, V. R.; Waterhouse, J. S. An improved technique for the batch processing of small whole wood samples to α-cellulose. Chemical Geology 1997, 136(3–4) 313–317.
  • Stalikas, C. D. Extraction, separation, and detection methods for phenolic acids and flavonoids. Journal of Separation Science 2007, 30(18), 3268–3295.
  • Farrán, A.; Cai, C.; Sandoval, M.; Xu, Y.; Liu, J.; Hernáiz, M. J.; Linhardt, R. J. Green solvents in carbohydrate chemistry: From raw materials to fine chemicals. Chemical Reviews 2015, 115(14), 6811–6853.
  • Zieliński, H.; Kozłowska, H. Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. Journal of Agricultural and Food Chemistry 2000, 48(6), 2008–2016.
  • Do, Q. D.; Angkawijaya, A. E.; Tran-Nguyen, P. L.; Huynh, L. H.; Soetaredjo, F. E.; Ismadji, S.; Ju, Y. H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of limnophila aromatica. Journal of Food and Drug Analysis 2014, 22(3), 296–302.
  • Fukasawa, Y.; Osono, T.; Takeda, H. Dynamics of physicochemical properties and occurrence of fungal fruit bodies during decomposition of coarse woody debris of Fagus crenata. Journal of Forest Research 2009, 14(1), 20–29.
  • Bani, A.; Pioli, S.; Ventura, M.; Panzacchi, P.; Borruso, L.; Tognetti, R.; Tonon, G.; Brusetti, L. The role of microbial community in the decomposition of leaf litter and deadwood. Applied Soil Ecology 2018, 126, 75–84.
  • Saranpää, P.; Höll, W. Soluble carbohydrates of Pinus sylvestris L. sapwood and heartwood. Trees 1989, 3(3), 138–143.
  • Sjöström, E.; Westermark, U. Chemical composition of wood and pulps: Basic constituents and their distribution. Analytical Methods in Wood Chemistry, Pulping, and Papermaking; Springer: Berlin, 1999, 1–19.
  • Rytioja, J.; Hildén, K.; Yuzon, J.; Hatakka, A.; de Vries, R. P.; Mäkelä, M. R. Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiology and Molecular Biology Reviews 2014, 78(4), 614–649.
  • Bertaud, F.; Holmbom, B. Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood. Wood Science and Technology 2004, 38(4), 245–256.
  • Álvarez, C.; Reyes-Sosa, F. M.; Díez, B. Enzymatic hydrolysis of biomass from wood. Microbial Biotechnology 2016, 9(2), 149–156.
  • Dhuli, P.; Rohloff, J.; Strimbeck, G. R. (2014). Metabolite changes in conifer buds and needles during forced bud break in Norway spruce (Picea abies) and European silver fir (abies Alba). Frontiers in Plant Science 2014, 5, 706–706.
  • Von Lippmann, E. O. (1912). Über vorkommen von trehalose, vanillin und d‐sorbit. European Journal of Berichte Der Deutschen Chemischen Gesellschaft 1912, 45(3), 3431–3434.
  • Oesch, F.; Meier, H. Trehalose in the cambial sap of fagus silvatica L. Phytochemistry 1967, 6(8), 1147–1148.
  • Lunn, J. E.; Delorge, I.; Figueroa, C. M.; Van Dijck, P.; Stitt, M. Trehalose metabolism in plants. Plant. The Plant Journal: For Cell and Molecular Biology 2014, 79(4), 544–567.
  • Müller, J.; Boller, T.; Wiemken, A. Trehalose and trehalase in plants: Recent developments. Plant Science 1995, 112(1), 1–9.
  • Asiegbu, F. O. Adhesion and development of the root rot fungus (Heterobasidion annosum) on conifer tissues: Effects of spore and host surface constituents. FEMS Microbiology Ecology 2000, 33(2), 101–110.
  • Isidorov, V. A.; Smolewska, M.; Purzyńska-Pugacewicz, A.; Tyszkiewicz, Z. Chemical composition of volatile and extractive compounds of pine and spruce leaf litter in the initial stages of decomposition. Biogeosciences 2010, 7(9), 2785–2794.
  • Bollmark, L.; Sennerby-Forsse, L.; Ericsson, T. Seasonal dynamics and effects of nitrogen supply rate on nitrogen and carbohydrate reserves in cutting-derived salix viminalis plants. Canadian Journal of Forest Research 1999, 29(1), 85–94.
  • Landh Usser, S. M.; Lieffers, V. J. Seasonal changes in carbohydrate reserves in mature Northern Populus tremuloides clones. Trees 2003, 17(6), 471–476.
  • Cox, S. E.; Stushnoff, C. Temperature-related shifts in soluble carbohydrate content during dormancy and cold acclimation in Populus tremuloides. Canadian Journal of Forest Research 2001, 31(4), 730–737.
  • Strimbeck, G. R.; Kjellsen, T. D.; Schaberg, P. G.; Murakami, P. F. Dynamics of low-temperature acclimation in temperate and boreal conifer foliage in a mild winter climate. Tree Physiology 2008, 28(9), 1365–1374.
  • Baldrian, P.; Valášková, V. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiology Review 2008, 32(3), 501–521.
  • Lillie, S. H.; Pringle, J. R. Reserve carbohydrate metabolism in Saccharomyces cerevisiae: Responses to nutrient limitation. Journal of Bacteriology 1980, 143(3), 1384–1394.
  • Baldrian, P.; Zrůstová, P.; Tláskal, V.; Davidová, A.; Merhautová, V.; Vrška, T. Fungi associated with decomposing deadwood in a natural beech-dominated forest. Fungal Ecology 2016, 23, 109–122.
  • Johnston, S. R.; Boddy, L.; Weightman, A. J. Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiology Ecology 2016, 92(11), fiw179.
  • Sati, S. C.; Bisht, S. Utilization of various carbon sources for the growth of waterborne conidial fungi. Mycologia 2006, 98(5), 678–681.
  • Hamad, H. O.; Alma, M. H.; Ismael, H. M.; Goceri, A. The effect of some sugars on the growth of Aspergillus niger. KSU. Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi 2015, 17(4), 7–11.
  • Wookey, P. A.; Aerts, R..; Bardgett, R. D.; Baptist, F.; Bråthen, K. A.; Cornelissen, J. H. C.; Gough, L.; Hartley, I. A.; Hopkins, D. W.; Lavorel, S.; Shaver, G. R. Ecosystem feedbacks and cascade processes: Understanding their role in the responses of Arctic and Alpine ecosystems to environmental change. Global Change Biology 2009, 15(5), 1153–1172.
  • Van der Putten, W. H. Climate change, aboveground-belowground interactions and species range shifts. Annual Review of Ecology, Evolution, and Systematics 2012, 43(1), 365–383.
  • Pioli, S.; Antonucci, S.; Giovannelli, A.; Traversi, M. L.; Borruso, L.; Bani, A.; Brusetti, L.; Tognetti, R. Community fingerprinting reveals increasing wood-inhabiting fungal diversity in unmanaged Mediterranean forests. Forest Ecology and Management 2018, 408, 202–210.
  • Fukasawa, Y.; Osono, T.; Takeda, H. Wood decomposing abilities of diverse lignicolous fungi on nondecayed and decayed beech wood. Mycologia 2011, 103(3), 474–482.
  • Palviainen, M.; Finér, L.; Laiho, R.; Shorohova, E.; Kapitsa, E.; Vanha-Majamaa, I. Carbon and nitrogen release from decomposing Scots Pine, Norway Spruce and Silver Birch Stumps. Forest Ecology and Management 2010, 259(3), 390–398.
  • Persiani, A. M.; Lombardi, F.; Lunghini, D.; Granito, V. M.; Tognetti, R.; Maggi, O.; Pioli, S.; Marchetti, M. Stand structure and deadwood amount influences saproxylic fungal biodiversity in Mediterranean mountain unmanaged forests. iForest - Biogeoscience Forestry 2016, 9(1), 115–124.
  • Parisi, F.; Lombardi, F.; Sciarretta, A.; Tognetti, R.; Campanaro, A.; Marchetti, M.; Trematerra, P. Spatial patterns of saproxylic beetles in a relic silver fir forest (Central Italy), relationships with forest structure and biodiversity indicators. Forest Ecology and Management 2016, 381, 217–234.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.