1,928
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Improving the Understanding of the Bonding Mechanism of Primary Components of Biomass Pellets through the Use of Advanced Analytical Instruments

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Anukam, A. Gasification characteristics of sugarcane bagasse. Masters dissertation, University of Fort Hare, Alice, South Africa, 2013.
  • Henriksen, U. B.; Holm, J. K.; Simonsen, P.; Berg, M.; Posselt, D.; Nikolaisen, L.; Plackett, D.; Møller, J. D. Fundamental understanding of pelletization. Technical report EFP-2005 project (33031-037), 2008.
  • Frodeson, S.; Henriksson, G.; Berghel, J. Pelletizing pure biomass substances to investigate the mechanical properties and bonding mechanisms. BioResources 2018, 13, 1202–1222. DOI: 10.15376/biores.13.1.1202-1222.
  • Ståhl, M. Improving wood fuel pellets for household use: perspectives on quality, efficiency and environment. PhD thesis, Karlstad University, Karlstad, Sweden, 2008.
  • Mobarak, F.; Fahmy, Y.; Augustin, H. Binderless lignocellulose composite from bagasse and mechanism of self-bonding. Holzforschung 1982, 36, 131–135. DOI: 10.1515/hfsg.1982.36.3.131.
  • Kaliyan, N. Binding mechanism of corn stover and switchgrass in briquettes and pellets. Presented at the ASABE 2008 Annual International Meeting, Providence, RI, June 29–July 2, 2008; Paper 084282.
  • Back, E. L. The bonding mechanism in hardboard manufacture. Holzforschung 1987, 41, 247–258. DOI: 10.1515/hfsg.1987.41.4.247.
  • Mani, S.; Tabil, L. G.; Sokhansanj, S. An overview of compaction of biomass grinds. Powder Handling and Processing 2003, 15, 160–168.
  • Philipson, W. R.; Ward, J. M.; Butterfield, B. G. The Vascular Cambium: Its Development and Activity; Chapman & Hall: London, UK, 1971.
  • Barnett, J. R. Secondary xylem cell development. In Xylem Cell Development; Barnett, J. R., Ed.; Castle House Publications: Royal Tunbridge Wells, UK, 1981, 47–95.
  • Iqbal, M.; Ghouse, A. K. M. Cambial concept and organization. In The Vascular Cambium; Iqbal, M., Ed.; Research Studies Press: Taunton, Somerset, 1990, 1–36.
  • Catesson, A. M. Cambial ultrastructure and biochemistry: changes in relation to vascular tissue differentiation and the seasonal cycle. International Journal of Plant Sciences 1994, 155, 251–261. DOI: 10.1086/297165.
  • Larson, P. R. The Vascular Cambium: Development and Structure; Springer-Verlag: Berlin, Germany, 1994.
  • Mani, S.; Tabil, L. G.; Sokhansanj, S. Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass and Bioenergy 2006, 30, 648–654. DOI: 10.1016/j.biombioe.2005.01.004.
  • Ramírez-Gómez, Á. Research Needs on Biomass Characterization to Prevent Handling Problems and Hazards in Industry. Particulate Science and Technology 2016, 34, 432–441. DOI: 10.1080/02726351.2016.1138262.
  • Stelte, W.; Sanadi, A. R.; Shang, L.; Holm, J. K.; Ahrenfeldt, J.; Henriksen, U. B. Recent developments in biomass pelletization – a review. BioResources 2012, 7, 4451–4490.
  • Anukam, A. I.; Mamphweli, S. N.; Reddy, P.; Okoh, O. O. Characterization and the effect of lignocellulosic biomass value addition on gasification efficiency. Energy Exploration and Exploitation 2016, 34, 865–880. DOI: 10.1177/0144598716665010.
  • Felhofer, M. Raman imaging to reveal in-situ molecular changes of wood during heartwood formation and drying. Masters dissertation, University of Natural Resources and Life Sciences, Vienna, Austria, 2016.
  • Neil, E. Organic Chemistry Structure and Function, 6th ed.; W. H. Freeman: New York, NY, 2011.
  • Whittaker, C.; Shield, I. Factors affecting wood, energy grass and straw pellet durability – a review. Renewable and Sustainable Energy Reviews 2017, 71, 1–11. DOI: 10.1016/j.rser.2016.12.119.
  • Irvine, G. M. The glass transitions of lignin and hemicellulose and their measurement by differential thermal analysis. TAPPI Journal 1984, 67, 118–121.
  • Cottrell, T. L. The Strengths of Chemical Bonds, 2nd ed.; Butterworth: London, UK, 1958.
  • Berglund, J.; Angles d'Ortoli, T.; Vilaplana, F.; Widmalm, G.; Bergenstråhle-Wohlert, M.; Lawoko, M.; Henriksson, G.; Lindström, M.; Wohlert, J. A molecular dynamics study of the effect glycosidic linkage type in the hemicellulose backbone on the molecular chain flexibility. The Plant Journal 2016, 88, 56–70. DOI: 10.1111/tpj.13259.
  • Frodeson, S.; Henriksson, G.; Berghel, J. Effects of moisture content during densification of biomass pellets, focusing on polysaccharide substances. Biomass and Bioenergy 2019, 122, 322–330. DOI: 10.1016/j.biombioe.2019.01.048.
  • Kilpeläinen, A.; Peltola, H.; Ryyppö, A.; Sauvala, K.; Laitinen, K.; Kellomäki, S. Wood properties of scots pines (Pinus sylvestris) grown at elevated temperature and carbon dioxide concentration. Tree Physiology 2003, 23, 889–897. DOI: 10.1093/treephys/23.13.889.
  • Lumen boundless chemistry. 2019. Organic chemistry: functional group names, properties and reactions. https://courses.lumenlearning.com/boundless-chemistry/chapter/functional-group-names-properties-and-reactions/ (accessed March 19, 2019).
  • Anukam, A.; Okoh, O.; Mamphweli, S.; Berghel, J. A comparative analysis of the gasification performances of torrefied and untorrefied bagasse: influence of feed size, gasifier design and operating variables on gasification efficiency. International Journal of Engineering and Technology 2018, 7, 859–867. DOI: 10.14419/ijet.v7i2.8489.
  • Anukam, A.; Mamphweli, S.; Meyer, E.; Okoh, O. Computer simulation of the mass and energy balance during gasification of sugarcane bagasse. Journal of Energy 2014, 2014, 1–9. DOI: 10.1155/2014/713054.
  • Anukam, A.; Mamphweli, S.; Okoh, O.; Reddy, P. Influence of torrefaction on the conversion efficiency of the gasification process of sugarcane bagasse. Bioengineering 2017, 4, 22–23. DOI: 10.3390/bioengineering4010022.
  • Chen, W. H.; Kuo, P. C. A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 2010, 35, 2580–2586. DOI: 10.1016/j.energy.2010.02.054.
  • Chen, W. H.; Kuo, P. C. Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy 2011, 36, 803–811. DOI: 10.1016/j.energy.2010.12.036.
  • Yang, H.; Yan, R.; Chen, H.; Lee, D. H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. DOI: 10.1016/j.fuel.2006.12.013.
  • Günzler, G.; Gremlich, H.-U. IR Spectroscopy; Wiley-VCH Verlag: Weinheim, Germany, 2002.
  • Perkin Elmer Life and Analytical Sciences. FT-IR spectroscopy: attenuated total reflectance (ATR). Technical note, 2005. https://shop.perkinelmer.com/content/TechnicalInfo/TCH_FTIRATR.pdf (accessed April 13, 2019).
  • LeVan, S. L. Thermal degradation. In Concise Encyclopedia of Wood & Wood-Based Materials, 1st ed.; Schniewind, A. P., Ed.; Pergamon Press: Elmsford, NY, 1989; 271–273.
  • Carrier, M.; Loppinet-Serani, A.; Denux, D.; Lasnier, J.-M.; Ham-Pichavant, F.; Cansell, F.; Aymonier, C. Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass and Bioenergy 2011, 35, 298–307. DOI: 10.1016/j.biombioe.2010.08.067.
  • Ghaffar, S. H.; Fan, M. Structural analysis for lignin characteristics in biomass straw. Biomass and Bioenergy 2013, 57, 264–279. DOI: 10.1016/j.biombioe.2013.07.015.
  • Moran-Mirabal, J. M. Advanced-microscopy techniques for the characterization of cellulose structure and cellulose-cellulase interactions. In Cellulose: Fundamental Aspects; Van De Ven, T. G. M., Ed.; InTech: London, UK, 2013.
  • Anukam, A.; Mamphweli, S.; Reddy, P.; Okoh, O.; Meyer, E. An investigation into the impact of reaction temperature on various parameters during torrefaction of sugarcane bagasse relevant to gasification. Journal of Chemistry 2015, 2015, 1–12. DOI: 10.1155/2015/235163.
  • Barmina, I.; Lickrastina, A.; Zake, M.; Arshanitsa, A.; Solodovnik, V.; Telysheva, G. Experimental study of thermal decomposition and combustion of lignocellulosic biomass pellets. Latvian Journal of Physics and Technical Sciences 2013, 50, 35–48. DOI: 10.2478/lpts-2013-0018.
  • Sugar Milling Research Institute. Sugarcane bagasse. Proceedings of South African Sugar Technologists Association 2008, 81, 266–273.
  • BC campus Open Education. 2019. Anatomy and physiology: the chemical level of organization. https://opentextbc.ca/anatomyandphysiology/chapter/2-5-organic-compounds-essential-to-human-functioning/ (accessed March 14, 2019).
  • Rumpf, H. The strength of granules and agglomerates. In Agglomeration, Knepper, W. A., Ed.; John Wiley and Sons: New York, NY: 1962, 379–418.
  • Tumuluru, J. S. Effect of pellet die diameter on density and durability of pellets made from high moisture woody and herbaceous biomass. Carbon Resources Conversion 2018, 1, 44–54. DOI: 10.1016/j.crcon.2018.06.002.
  • Kotilainen, R. A.; Toivanen, T.-J.; Alén, R. J. FTIR monitoring of chemical changes in softwood during heating. Journal of Wood Chemistry and Technology 2000, 20, 307–320. DOI: 10.1080/02773810009349638.
  • Keskar, S. S.; Edye, L. A.; Christopher, M.; Fellows, C. M.; Doherty, W. O. S. ATR-FTIR measurement of biomass components in phosphonium ionic liquids. Journal of Wood Chemistry and Technology 2012, 32, 175–186. DOI: 10.1080/02773813.2011.631718.
  • Nuopponen, M.; Vuorinen, T.; Jämsä, S.; Viitaniemi, P. Thermal modifications in softwood studied by FT‐IR and UV resonance Raman spectroscopies. Journal of Wood Chemistry and Technology 2005, 24, 13–26. DOI: 10.1081/WCT-120035941.
  • Brys, A.; Brys, J.; Ostrowska-Ligeza, E.; Kaleta, A.; Gornicki, K.; Głowacki, S.; Koczon, P. Wood biomass characterization by DSC or FT-IR spectroscopy. Journal of Thermal Analysis and Calorimetry 2016, 126, 27–35. DOI: 10.1007/s10973-016-5713-2.
  • Faix, O. Classifcation of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 1991, 45, 21–27. DOI: 10.1515/hfsg.1991.45.s1.21.
  • Su, Y.; Luo, Y.; Wu, W.; Zhang, Y.; Zhao, S. Characteristics of pine wood oxidative pyrolysis: degradation behaviour, carbon oxide production and head properties. Journal of Analytical and Applied Pyrolysis 2012, 98, 137–143. DOI: 10.1016/j.jaap.2012.07.005.
  • Biswas, A. Effect of chemical and physical properties on combustion of biomass particle. PhD thesis, Luleå University of Technology, Luleå, Sweden, 2015.
  • Prins, M. J.; Ptasinski, K. J.; Janssen, F. J. J. G. Torrefaction of wood: part 1. Weight loss kinetics. Journal of Analytical and Applied Pyrolysis 2006, 77, 28–34. DOI: 10.1016/j.jaap.2006.01.002.
  • Shen, D. K.; Gu, S.; Luo, K. H.; Bridgwater, A. V.; Fang, M. X. Kinetic study on thermal decomposition of woods in oxidative environment. Fuel 2009, 88, 1024–1030. DOI: 10.1016/j.fuel.2008.10.034.
  • Schniewind, A. P. Concise Encyclopedia of Wood and Wood-Based Materials, 1st ed.; Pergamon Press: Elmsford, NY, 1989, 271–273.
  • Brackley, A. M.; Parrent, D. J. Production of wood pellets from Alaska-grown white spruce and hemlock. United States Department of Agriculture, Forest Service General Technical Report PNW-GTR-845, Pacific Northwest Research Station, 2011.
  • Mittal, K. L. The role of the interface in adhesion phenomena. Polymer Engineering and Science 1977, 17, 467–473. DOI: 10.1002/pen.760170709.
  • Harkin, J. M. Lignin production and detection in wood. U.S. Forest Service Research Note FPL-0148, 1966.
  • Kaliyan, N.; Morey, R. V. Factors affecting strength and durability of densified products. Presented at the 2006 ASABE Annual International Meeting, Portland, Oregon, July 9–12, 2006; Paper 066077.
  • Tabil, L. G.; Sokhansanj, S.; Tyler, R. T. Performance of different binders during alfalfa pelleting. Canadian Agricultural Engineering 1997, 39, 17–23.
  • Tabil, L. G.; Sokhansanj, S. Process conditions affecting the physical quality of alfalfa. American Society of Agricultural Engineers 1996, 12, 345–350.
  • Sokhansanj, S.; Tabil, L.; Wang, W. Characteristics of plant tissue to form pellet. Powder Handling and Processing: The International Journal of Strong, Handling and Processing Powder 1999, 11, 149–159.
  • Harun, N. Y.; Parvez, A. M.; Afzal, M. T. Process and energy analysis of pelleting agricultural and woody biomass blends. Sustainability 2018, 10, 1–9. DOI: 10.3390/su10061770.
  • Gardner, D. J. Adhesion mechanism of durable wood adhesive bonds. In Characterization of the Cellulose Cell Wall; John Wiley & Sons, Inc.: Hoboken, NJ, 2006, 254–265.
  • Mani, S.; Sokhansanj, S.; Bi, X.; Turhollow, A. Economics of producing fuel pellets from biomass. Applied Engineering in Agriculture 2006, 22, 421–426.
  • Liu, Z.; Quek, A.; Balasubramanian, R. Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars. Applied Energy 2014, 113, 1315–1322. DOI: 10.1016/j.apenergy.2013.08.087.
  • Johansson, L. S.; Campbell, J. M.; Hänninen, T.; Ganne-Chédeville, C.; Vuorinen, T.; Hughes, M.; Laine, J. XPS and the medium-dependent surface adaption of cellulose in wood. Surface and Interface Analysis 2012, 44, 899–903. DOI: 10.1002/sia.4839.
  • Bryne, L. E.; Lausmaa, J.; Ernstsson, M.; Englund, F.; Wålinder, M. E. P. Ageing of modified wood. Part 2: determination of surface composition of acetylated, furfurylated, and thermally modified wood by XPS and ToF-SIMS. Holzforschung 2010, 64, 305–313. DOI: 10.1515/hf.2010.062.
  • Wang, Z.; Winestrand, S.; Gillgren, T.; Jönsson, L. J. Chemical and structural factors influencing enzymatic saccharification of wood from aspen, birch and spruce. Biomass and Bioenergy 2018, 109, 125–134. DOI: 10.1016/j.biombioe.2017.12.020.
  • Rodriguez, Y. P.; Puhakka-Tarvainen, H.; Pastinen, O.; Siika-Aho, M.; Alvila, L.; Turunen, O.; Morales, L.; Pappinen, A. Susceptibility of pretreated wood sections of Norway spruce (Picea abies) clones to enzymatic hydrolysis. Canadian Journal of Forest Research 2012, 42, 38–46. DOI: 10.1139/x11-154.
  • Azhar, S. Extraction of polymeric hemicelluloses from spruce wood. PhD thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2015.
  • Källbom, S. Surface characterisation of thermally modified spruce wood and influence of water vapour sorption. Licentiate thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2015.