372
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Fabrication of a Robust and Flame-Retardant Alooh-Lignocellulose Composite with a Lotus-Leaf-Like Superhydrophobic Coating

, , , &

REFERENCES

  • Monteiro, S. N.; Lopes, F. P. D.; Barbo Sa, A. P.; Bevitori, A. B.; Silva, I. L. A. D.; Costa, L. L. D. Natural lignocellulosic fibers as engineering materials—an overview. Metallurgical and Materials Transaction A 2011, 42, 2963–2974. DOI: 10.1007/s11661-011-0789-6.
  • Nanda, S.; Mohammad, J.; Reddy, S. N.; Kozinski, J. A.; Dalai, A. K. Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conversion and Biorefinery 2014, 4, 157–191. DOI: 10.1007/s13399-013-0097-z.
  • Chen, Y.; Dang, B.; Jin, C.; Sun, Q. Processing lignocellulose-based composites into an ultrastrong structural material. ACS Nano 2019, 13, 371–376. DOI: 10.1021/acsnano.8b06409.
  • De Carvalho, L. H.; Moraes, G. S.; D'Almeida, J. R. M. Influence of water absorption and pre-drying conditions on the tensile mechanical properties of hybrid lignocellulosic fiber/polyester composites. Journal of Reinforced Plastics and Composites 2009, 28, 1921–1932. DOI: 10.1177/0731684408095786.
  • Lowden, L. A.; Hull, T. R. Flammability behaviour of wood and a review of the methods for its reduction. Fire Science Reviews 2013, 2, 4. DOI: 10.1186/2193-0414-2-4.
  • Šimkovic, I.; Pastýr, J.; Antal, M.; Balog, K.; Košik, Š.; Plaček, J. New aspects in cationization of lignocellulose materials. IX. Flame retardancy effect of modification with nitrogen and sulfur containing groups. Journal of Applied Polymer Science 1987, 34, 1057–1061. DOI: 10.1002/app.1987.070340315.
  • Kozlowski, R.; Mieleniak, B.; Helwig, M.; Przepiera, A. Flame resistant lignocellulosic-mineral composite particleboards. Polymer Degradation and Stability 1999, 64, 523–528. DOI: 10.1016/S0141-3910(98)00145-1.
  • Tomak, E. D.; Hughes, M.; Yildiz, U. C.; Viitanen, H. The combined effects of boron and oil heat treatment on beech and scots pine wood properties. Part 1: boron leaching, thermogravimetric analysis, and chemical composition. Journal of Material Science 2011, 46, 598–607. DOI: 10.1007/s10853-010-4859-8.
  • Grexa, O.; Poutch, F.; Manikova, D.; Martvonova, H.; Bartekova, A. Intumescence in fire retardancy of lignocellulosic panels. Polymer Degradation and Stability 2003, 82, 373–377. DOI: 10.1016/S0141-3910(03)00215-5.
  • Wang, Z.; Shen, X.; Yan, Y.; Qian, T.; Wang, J.; Sun, Q.; Jin, C. Facile fabrication of a PDMS @ stearic acid-Al(OH)3 coating on lignocellulose composite with superhydrophobicity and flame retardancy. Applied Surface Science 2018, 450, 387–395. DOI: 10.1016/j.apsusc.2018.04.220.
  • Wang, H.; Yao, Q.; Wang, C.; Ma, Z.; Sun, Q.; Fan, B.; Jin, C.; Chen, Y. Hydrothermal synthesis of nanooctahedra MnFe2O4 onto the wood surface with soft magnetism, fire resistance and electromagnetic wave absorption. Nanomaterials 2017, 7, 118. DOI: 10.3390/nano7060118.
  • Chou, C.-S.; Lin, S.-H.; Wang, C.-I. Preparation and characterization of the intumescent fire retardant coating with a new flame retardant. Advanced Powder Technology 2009, 20, 169–176. DOI: 10.1016/j.apt.2008.07.002.
  • Zhang, Z.; Wu, W.; Zhang, M.; Qu, J.; Shi, L.; Qu, H.; Xu, J. Hydrothermal synthesis of 4ZnO·B2O3·H2O/RGO hybrid material and its flame retardant behavior in flexible PVC and magnesium hydroxide composites. Applied Surface Science 2017, 425, 896–904. DOI: 10.1016/j.apsusc.2017.07.101.
  • Zhang, Q-h.; Gu, J.; Chen, G-q.; Xing, T-l. Durable flame retardant finish for silk fabric using boron hybrid silica sol. Applied Surface Science 2016, 387, 446–453. DOI: 10.1016/j.apsusc.2016.06.119.
  • Guan, Y.-H.; Huang, J.-Q.; Yang, J.-C.; Shao, Z.-B.; Wang, Y.-Z. An effective way to flame-retard biocomposite with ethanolamine modified ammonium polyphosphate and its flame retardant mechanisms. Industrial & Engineering Chemistry Research 2015, 54, 3524–3531. DOI: 10.1021/acs.iecr.5b00123.
  • Alongi, J.; Tata, J.; Frache, A. Hydrotalcite and nanometric silica as finishing additives to enhance the thermal stability and flame retardancy of cotton. Cellulose 2011, 18, 179–190. DOI: 10.1007/s10570-010-9473-z.
  • Chen, X. Y.; Zhang, Z. J.; Li, X. L.; Lee, S. W. Controlled hydrothermal synthesis of colloidal boehmite (γ-AlOOH) nanorods and nanoflakes and their conversion into γ-Al2O3 nanocrystals. Solid State Communication 2008, 145, 368–373. DOI: 10.1016/j.ssc.2007.11.033.
  • Zhang, J.; Ji, Q.; Zhang, P.; Xia, Y.; Kong, Q. Thermal stability and flame-retardancy mechanism of poly(ethylene terephthalate)/boehmite nanocomposites. Polymer Degradation and Stability 2010, 95, 1211–1218. DOI: 10.1016/j.polymdegradstab.2010.04.001.
  • Sherif, E. Continuous hydrothermal synthesis of Alo(OH) nanorods as a clean flame retardant agent. Particuology 2015, 22, 66–71. DOI: 10.1016/j.partic.2014.11.011.
  • Gao, X.; Yan, X.; Yao, X.; Xu, L.; Zhang, K.; Zhang, J.; Yang, B.; Jiang, L. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Advanced Materials 2007, 19, 2213–2217. DOI: 10.1002/adma.200601946.
  • Martines, E.; Seunarine, K.; Morgan, H.; Gadegaard, N.; Wilkinson, C. D. W.; Riehle, M. O. Superhydrophobicity and superhydrophilicity of regular nanopatterns. Nano Letter 2005, 5, 2097–2103. DOI: 10.1021/nl051435t.
  • Cheng, Y.-T.; Rodak, D. E. Is the lotus leaf superhydrophobic? Applied Physics Letter 2005, 86, 144101. DOI: 10.1063/1.1895487.
  • Wang, S.; Liu, K.; Yao, X.; Jiang, L. Bioinspired surfaces with superwettability: new insight on theory, design, and applications. Chemical Reviews 2015, 115, 8230–8293. DOI: 10.1021/cr400083y.
  • Li, Y.; Mao, H.; Hu, P.; Hermes, M.; Lim, H.; Yoon, J.; Luhar, M.; Chen, Y.; Wu, W. Bioinspired functional surfaces enabled by multiscale stereolithography. Advanced Materials Technologies 2019, 4, 1800638. DOI: 10.1002/admt.201800638.
  • Nosonovsky, M.; Bhushan, B. Biomimetic superhydrophobic surfaces: multiscale approach. Nano Letter 2007, 7, 2633–2637. DOI: 10.1021/nl071023f.
  • Kim, D.; Park, S.-J.; Jeon, S.-B.; Seol, M.-L.; Choi, Y.-K. A triboelectric sponge fabricated from a cube sugar template by 3D soft lithography for superhydrophobicity and elasticity. Advanced Electronic Materials 2016, 2, 1500331. DOI: 10.1002/aelm.201500331.
  • Chen, Y.; Wang, H.; Yao, Q.; Fan, B.; Wang, C.; Xiong, Y.; Jin, C.; Sun, Q. Biomimetic taro leaf-like films decorated on wood surfaces using soft lithography for superparamagnetic and superhydrophobic performance. Journal of Material Science 2017, 52, 7428–7438. DOI: 10.1007/s10853-017-0976-y.
  • Dai, S.; Zhang, D.; Shi, Q.; Han, X.; Wang, S.; Du, Z. Biomimetic fabrication and tunable wetting properties of three-dimensional hierarchical ZnO structures by combining soft lithography templated with lotus leaf and hydrothermal treatments. CrystEngComm 2013, 15, 5417–5424. DOI: 10.1039/c3ce40238j.
  • Li, Y.-Q.; Yu, T.; Yang, T.-Y.; Zheng, L.-X.; Liao, K. Bio-inspired nacre-like composite films based on graphene with superior mechanical, electrical, and biocompatible properties. Advanced Materials 2012, 24, 3426–3431. DOI: 10.1002/adma.201200452.
  • Liu, B.; He, Y.; Fan, Y.; Wang, X. Fabricating super-hydrophobic lotus-leaf-like surfaces through soft-lithographic imprinting. Macromolecular Rapid Communications 2006, 27, 1859–1864. DOI: 10.1002/marc.200600492.
  • Fan, B.; Chen, S.; Yao, Q.; Sun, Q.; Jin, C. Fabrication of cellulose nanofiber/AlOOH aerogel for flame retardant and thermal insulation. Materials 2017, 10, 311. DOI: 10.3390/ma10030311.
  • Zimmermann, T.; Bordeanu, N.; Strub, E. Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydrate Polymers 2010, 79, 1086–1093. DOI: 10.1016/j.carbpol.2009.10.045.
  • Xiao, S.; Gao, R.; Lu, Y.; Li, J.; Sun, Q. Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles. Carbohydrate Polymers 2015, 119, 202–209. DOI: 10.1016/j.carbpol.2014.11.041.
  • Hota, G.; Kumar, B. R.; Ng, W. J.; Ramakrishna, S. Fabrication and characterization of a boehmite nanoparticle impregnated electrospun fiber membrane for removal of metal ions. Journal of Material Science 2008, 43, 212–217. DOI: 10.1007/s10853-007-2142-4.
  • Salehian, P.; Karimi, K.; Zilouei, H.; Jeihanipour, A. Improvement of biogas production from pine wood by alkali pretreatment. Fuel 2013, 106, 484–489. DOI: 10.1016/j.fuel.2012.12.092.
  • Kazayawoko, M.; Balatinecz, J. J.; Woodhams, R. T. Diffuse reflectance Fourier transform infrared spectra of wood fibers treated with maleated polypropylenes. Journal of Applied Polymer Science 1997, 66, 1163–1173. DOI: 10.1002/(SICI)1097-4628(19971107)66: 6 < 1163::AID-APP16 > 3.0.CO;2-2.
  • Faix, O. Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 1991, 45, 21–28. DOI: 10.1515/hfsg.1991.45.s1.21.
  • Wang, H.; Yao, Q.; Wang, C.; Fan, B.; Sun, Q.; Jin, C.; Xiong, Y.; Chen, Y. A simple, one-step hydrothermal approach to durable and robust superparamagnetic, superhydrophobic and electromagnetic wave-absorbing wood. Science Report 2016, 6, 35549. DOI: 10.1038/srep35549.
  • Sanchez-Silva, L.; López-González, D.; Villaseñor, J.; Sánchez, P.; Valverde, J. L. Thermogravimetric–mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresource Technology 2012, 109, 163–172. DOI: 10.1016/j.biortech.2012.01.001.
  • Kim, H.-T.; Kang, J.; Mun, J.; Oh, S. M.; Yim, T.; Kim, Y. G. Pyrrolinium-based ionic liquid as a flame retardant for binary electrolytes of lithium ion batteries. ACS Sustainable Chemistry & Engineering 2016, 4, 497–505. DOI: 10.1021/acssuschemeng.5b00981.
  • Sonnier, R.; Dumazert, L.; Livi, S.; Nguyen, T. K. L.; Duchet-Rumeau, J.; Vahabi, H.; Laheurte, P. Flame retardancy of phosphorus-containing ionic liquid based epoxy networks. Polymer Degradation and Stability 2016, 134, 186–193. DOI: 10.1021/j.polymdegradstab.2016.10.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.