103
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Fractionation of non-timber wood from Atlantic mixed forest into high-value lignocellulosic materials

, , , ORCID Icon & ORCID Icon

References

  • Murua Mugica, J. R.; Albiac Murillo, J.; Astorkiza Ikazuriaga, I.; Eguía Peña, B.; Ferrero Rodríguez, A.; Moreno Díaz, J. Libro Blanco Del Sector de La Madera; Eusko Jaurlaritzaren Argitalpen Zerbitzu Nagusia (Central Publishing Service of the Basque Government): Gasteiz, Spain, 2016, 193.
  • Sorek, N.; Yeats, T. H.; Szemenyei, H.; Youngs, H.; Somerville, C. R. The Implications of Lignocellulosic Biomass Chemical Composition for the Production of Advanced Biofuels. Bioscience 2014, 64, 192–201. DOI: 10.1093/biosci/bit037.
  • Area of Inventories and Forestry Statistics. Fourth National Forest Inventory Autonomous Community of the Basque Country/EUSKADI; Tecnologías y Servicios Agrarios, S.A.: Madrid, España, 2017.
  • MAPA. Annual Report on the State of the Natural Heritage and Biodiversity; Spanish Ministry of Agriculture and Fisheries, Alimentation and Environment: Madrid, 2017.
  • Michel Rodríguez, M. El Pino Radiata En La Historia Forestal Vasca : Análisis de Un Proceso de Forestalismo Intensivo; Aranzadi Zientzi Elkartea: San Sebastian, ES, 2006.
  • HAZI Fundazioa. Basque Forest in Figures 2017; 2017. http://www.nasdap.net/inventarioforestal
  • Fitzpatrick, M.; Champagne, P.; Cunningham, M. F.; Whitney, R. A. Bioresource Technology a Biorefinery Processing Perspective : Treatment of Lignocellulosic Materials for the Production of Value-Added Products. Bioresour. Technol. 2010, 101, 8915–8922. DOI: 10.1016/j.biortech.2010.06.125.
  • Nizami, A. S.; Rehan, M.; Waqas, M.; Naqvi, M.; Ouda, O. K.; Shahzad, K.; Miandad, R.; Khan, M. Z.; Syamsiro, M.; Ismail, I. M. I.; et al. Waste Biorefineries: Enabling Circular Economies in Developing Countries. Bioresour. Technol. 2017, 241, 1101–1117. DOI: 10.1016/j.biortech.2017.05.097.
  • de Jong, E.; Jungmeier, G. Biorefinery Concepts in Comparison to Petrochemical Refineries. Chapter 1. In Industrial Biorefineries and White Biotechnology; Part A. Industrial Biorefineries; Pandey, A.; Höfer, R.; Taherzadeh, M.; Nampoothiri, K. M.; Larroche, C., Eds.; 2015, 3–33. DOI: 10.1016/B978-0-444-63453-5.00001-X.
  • Hassan, S. S.; Williams, G. A.; Jaiswal, A. K. Emerging Technologies for the Pretreatment of Lignocellulosic Biomass. Bioresour. Technol. 2018, 262, 310–318. DOI: 10.1016/j.biortech.2018.04.099.
  • Nitsos, C.; Stoklosa, R.; Karnaouri, A.; Vörös, D.; Lange, H.; Hodge, D.; Crestini, C.; Rova, U.; Christakopoulos, P. Isolation and Characterization of Organosolv and Alkaline Lignins from Hardwood and Softwood Biomass. ACS Sustain. Chem. Eng. 2016, 4, 5181–5193. DOI: 10.1021/acssuschemeng.6b01205.
  • Fernández-Rodríguez, J.; Gordobil, O.; Robles, E.; González-Alriols, M.; Labidi, J. Lignin Valorization from Side-Streams Produced during Agricultural Waste Pulping and Total Chlorine Free Bleaching. J. Clean. Prod. 2017, 142, 2609–2617. DOI: 10.1016/j.jclepro.2016.10.198.
  • Schulze, P.; Leschinsky, M.; Seidel-Morgenstern, A.; Lorenz, H. Continuous Separation of Lignin from Organosolv Pulping Liquors: Combined Lignin Particle Formation and Solvent Recovery. Ind. Eng. Chem. Res. 2019, 58, 3797–3810. DOI: 10.1021/acs.iecr.8b04736.
  • Salas, C.; Nypelö, T.; Rodriguez-Abreu, C.; Carrillo, C.; Rojas, O. J. Nanocellulose Properties and Applications in Colloids and Interfaces. Curr. Opin. Colloid Interface Sci. 2014, 19, 383–396. DOI: 10.1016/j.cocis.2014.10.003.
  • Mondal, S. Review on Nanocellulose Polymer Nanocomposites. Polym. Plast. Technol. Eng. 2018, 57, 1377–1391. DOI: 10.1080/03602559.2017.1381253.
  • Henriksson, M.; Berglund, L. A.; Isaksson, P.; LindströM, T.; Nishino, T. Cellulose Nanopaper Structures of High Toughness. Biomacromolecules 2008, 9, 1579–1585. DOI: 10.1021/bm800038n.
  • Bajwa, D. S.; Pourhashem, G.; Ullah, A. H.; Bajwa, S. G. A Concise Review of Current Lignin Production, Applications, Products and Their Environmental Impact. Ind. Crops Prod. 2019, 139, 111526. DOI: 10.1016/j.indcrop.2019.111526.
  • TAPPI T 204 cm-07. Solvent Extractives of Wood and Pulp; Technical Association of the Pulp and Paper Industry: Peachtree Corners, GA, 2007.
  • TAPPI T 211 om-16. Ash in Wood, Pulp, Paper and Paperboard: Combustion at 525 Degrees; Technical Association of the Pulp and Paper Industry: Peachtree Corners, GA, 2016.
  • TAPPI T 222 om-11. Acid-Insoluble Lignin in Wood and Pulp; Technical Association of the Pulp and Paper Industry: Peachtree Corners, GA, 2011.
  • Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass-Laboratory Analytical Procedure (LAP). Technical Report NREL/TP-510-42621. 2012. NREL/TP-510-42618.
  • Wise, L. E.; Murphy, M.; D’Addieco, A. A.; Holocellulose, C. Its Fractionation and Bearing on Summative Wood Analysis and on Studies on the Hemicelluloses. Pap. Trade J. 1946, 122, 35–43.
  • Pettersen, R. The Chemistry of Solid Wood. In The Chemistry of Solid Wood; Rowell, R. M., Ed.; American Chemical Society: Washington, DC, 1984; Vol. 207, pp 1–9. 10.1021/ba-1984-0207.
  • Robles, E.; Fernández-Rodríguez, J.; Barbosa, A. M.; Gordobil, O.; Carreño, N. L. V.; Labidi, J. Production of Cellulose Nanoparticles from Blue Agave Waste Treated with Environmentally Friendly Processes. Carbohydr. Polym. 2018, 183, 294–302. DOI: 10.1016/j.carbpol.2018.01.015.
  • TAPPI T 429 cm-10. Alpha-Cellulose in Paper; Technical Association of the Pulp and Paper Industry: Peachtree Corners, GA, 2010.
  • Dávila, I.; Gullón, P.; Andrés, M. A.; Labidi, J. Coproduction of Lignin and Glucose from Vine Shoots by Eco-Friendly Strategies: Toward the Development of an Integrated Biorefinery. Bioresour. Technol. 2017, 244, 328–337. DOI: 10.1016/j.biortech.2017.07.104.
  • French, A. D.; Santiago Cintrón, M. Cellulose Polymorphy, Crystallite Size, and the Segal Crystallinity Index. Cellulose 2013, 20, 583–588. DOI: 10.1007/s10570-012-9833-y.
  • Herrera, R.; Erdocia, X.; Llano-Ponte, R.; Labidi, J. Characterization of Hydrothermally Treated Wood in Relation to Changes on Its Chemical Composition and Physical Properties. J. Anal. Appl. Pyrolysis 2014, 107, 256–266. DOI: 10.1016/j.jaap.2014.03.010.
  • Saidur, R.; Abdelaziz, A.; Demirbas, A.; Hossain, M. S.; Mekhilef, S. A Review on Biomass as a Fuel for Boilers. Renew. Sustain. Energy Rev. 2011, 15, 2262–2289. DOI: 10.1016/j.rser.2011.02.015.
  • Roitto, M.; Siwale, W.; Tanner, J.; Ilvesniemi, H.; Julkunen-Tiitto, R.; Verkasalo, E. 2015 Characterization of Extractives in Tree Biomass and By-Products of Plywood and Saw Mills from Finnish Birch in Different Climatic Regions for Value-Added Chemical Products. In International Scientific Conference on Hardwood Processing; ISCHP 2015, Ed.; Quebec City, Canada, pp 190–197.
  • Sablík, P.; Giagli, K.; Pařil, P.; Baar, J.; Rademacher, P. Impact of Extractive Chemical Compounds from Durable Wood Species on Fungal Decay after Impregnation of Nondurable Wood Species. Eur. J. Wood Prod. 2016, 74, 231–236. DOI: 10.1007/s00107-015-0984-z.
  • Chow, P.; Rolfe, G. L.; Motter, W. Chemical Compositions of Five 3-Year-Old Hardwood Trees. Wood Fiber Sci. 1995, 27, 319–326.
  • Mateo, C.; Chirat, C.; Lachenal, D. The Chromophores Remaining after Bleaching to Moderate Brightness. J. Wood Chem. Technol. 2005, 24, 279–288. DOI: 10.1081/WCT-200038192.
  • Popescu, M.-C.; Popescu, C.-M.; Lisa, G.; Sakata, Y. Evaluation of Morphological and Chemical Aspects of Different Wood Species by Spectroscopy and Thermal Methods. J. Mol. Struct. 2011, 988, 65–72. DOI: 10.1016/j.molstruc.2010.12.004.
  • Ioelovich, M.; Leykin, A.; Figovsky, O. Study of Cellulose Paracrystallinity. BioResources 2010, 5, 1393–1407.
  • Park, S.; Baker, J. O.; Himmel, M. E.; Parilla, P. A.; Johnson, D. K. Cellulose Crystallinity Index: Measurement Techniques and Their Impact on Interpreting Cellulase Performance. Biotechnol. Biofuels 2010, 3, 10. DOI: 10.1186/1754-6834-3-10.
  • Sequeiros, A.; Labidi, J. Characterization and Determination of the S/G Ratio via Py-GC/MS of Agricultural and Industrial Residues. Ind. Crops Prod. 2017, 97, 469–476. DOI: 10.1016/j.indcrop.2016.12.056.
  • Erdocia, X.; Prado, R.; Corcuera, M. Á.; Labidi, J. Effect of Different Organosolv Treatments on the Structure and Properties of Olive Tree Pruning Lignin. J. Ind. Eng. Chem. 2014, 20, 1103–1108. DOI: 10.1016/j.jiec.2013.06.048.
  • Tarasov, D.; Leitch, M.; Fatehi, P. Lignin-Carbohydrate Complexes: Properties, Applications, Analyses, and Methods of Extraction: A Review. Biotechnol. Biofuels 2018, 11, 269. DOI: 10.1186/s13068-018-1262-1.
  • Takashi, N.; Ikuyo, M.; Hirao, K. All-Cellulose Composite. Macromolecules. 2004, 37, 7683–7687.. DOI: 10.1021/MA049300H.
  • Gordobil, O.; Herrera, R.; Yahyaoui, M.; İlk, S.; Kaya, M.; Labidi, J. Potential Use of Kraft and Organosolv Lignins as a Natural Additive for Healthcare Products. RSC Adv. 2018, 8, 24525–24533. DOI: 10.1039/C8RA02255K.
  • Yue, P.-P.; Hu, Y.-J.; Fu, G.-Q.; Sun, C.-X.; Li, M.-F.; Peng, F.; Sun, R.-C. Structural Differences between the Lignin-Carbohydrate Complexes (LCCs) from 2- and 24-Month-Old Bamboo (Neosinocalamus affinis). Int. J. Mol. Sci. 2017, 19, 1. DOI: 10.3390/ijms19010001.
  • Zhao, J.; Xiuwen, W.; Hu, J.; Liu, Q.; Shen, D.; Xiao, R. Thermal Degradation of Softwood Lignin and Hardwood Lignin by TG-FTIR and Py-GC/MS. Polym. Degrad. Stab. 2014, 108, 133–138. DOI: 10.1016/j.polymdegradstab.2014.06.006.
  • Camarero, S.; Bocchini, P.; Galletti, G. C.; Martínez, A. T. Pyrolysis-Gas Chromatography/Mass Spectrometry Analysis of Phenolic and Etherified Units in Natural and Industrial Lignins. Rapid Commun. Mass Spectrom. 1999, 13, 630–636.(SICI)1097-0231(19990415)13:7 < 630::AID-RCM535 > 3.0.CO;2-5. DOI: 10.1002/(SICI)1097-0231(19990415)13:7<630::AID-RCM535>3.0.CO;2-5.
  • Constant, S.; Wienk, H. L. J.; Frissen, A. E.; Peinder, P. D.; Boelens, R.; van Es, D. S.; Grisel, R. J. H.; Weckhuysen, B. M.; Huijgen, W. J. J.; Gosselink, R. J. A.; Bruijnincx, P. C. A. New Insights into the Structure and Composition of Technical Lignins: A Comparative Characterisation Study. Green Chem. 2016, 18, 2651–2665. DOI: 10.1039/C5GC03043A.
  • Pouteau, C.; Dole, P.; Cathala, B.; Averous, L.; Boquillon, N. Antioxidant Properties of Lignin in Polypropylene. Polym. Degrad. Stab. 2003, 81, 9–18.(03)00057-0. DOI: 10.1016/S0141-3910(03)00057-0.
  • Tolbert, A.; Akinosho, H.; Khunsupat, R.; Naskar, A. K.; Ragauskas, A. J. Characterization and Analysis of the Molecular Weight of Lignin for Biorefining Studies. Biofuels, Bioprod. Bioref. 2014, 8, 836–856. DOI: 10.1002/bbb.1500.
  • Glasser, W. G.; Davé, V.; Frazier, C. E. Molecular Weight Distribution of (Semi-) Commercial Lignin Derivatives. J. Wood Chem. Technol. 1993, 13, 545–559. DOI: 10.1080/02773819308020533.
  • Yoo, C. G.; Dumitrache, A.; Muchero, W.; Natzke, J.; Akinosho, H.; Li, M.; Sykes, R. W.; Brown, S. D.; Davison, B.; Tuskan, G. A.; et al. Significance of Lignin S/G Ratio in Biomass Recalcitrance of Populus trichocarpa Variants for Bioethanol Production. ACS Sustain. Chem. Eng. 2018, 6, 2162–2168. DOI: 10.1021/acssuschemeng.7b03586.
  • Kawamoto, H. Lignin Pyrolysis Reactions. J. Wood Sci. 2017, 63, 117–132. DOI: 10.1007/s10086-016-1606-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.