178
Views
7
CrossRef citations to date
0
Altmetric
Articles

Delignification of autohydrolyzed wood in media containing water and a protic ionic liquid

, &

References

  • Blanco, J. A.; Candel-Pérez, D.; Lo, Y. H. Determinants and Tools to Evaluate the Ecological Sustainability of Using Forest Biomass as an Alternative Energy Source. In Forest Biomass and Carbon; Shuka, G.; Chakravarty, S., Eds. IntechOpen: London, UK, 2018; pp 83–102.
  • Zheng, J.; Tashiro, Y.; Wang, Q.; Sakai, K.; Sonomoto, K. Feasibility of Acetone-Butanol-Ethanol Fermentation from Eucalyptus Hydrolysate without Nutrients Supplementation. Appl. Energy 2015, 140, 113–119. DOI: 10.1016/j.apenergy.2014.11.037.
  • Scarlat, N.; Dallemand, J. F.; Monforti-Ferrario, F.; Nita, V. The Role of Biomass and Bioenergy in a Future Bioeconomy: Policies and Facts. Environ. Dev. 2015, 15, 3–34. DOI: 10.1016/j.envdev.2015.03.006.
  • Asveld, L.; Est, van, R.; Stemerding, D. (Eds). Getting to the Core of the Bio-Economy: A Perspective on the Sustainable Promise of Biomass. Rathenau Instituut: Den Haag, 2011.
  • Rockwood, D. L.; Rudie, A. W.; Ralph, S. A.; Zhu, J. Y.; Winandy, J. E. Energy Product Options for Eucalyptus Species Grown as Short Rotation Woody Crops. Int. J. Mol. Sci. 2008, 9, 1361–1378. DOI: 10.3390/ijms9081361.
  • Pérez, S.; Renedo, C. J.; Ortiz, A.; Mañana, M.; Silió, D. Energy Evaluation of Eucalyptus Globulus and the Eucalyptus Nitens in the North of Spain (Cantabria). Thermochim. Acta 2006, 451, 57–64. DOI: 10.1016/j.tca.2006.08.009.
  • Yáñez, S. M.; Matsuhiro, B.; Maldonado, S.; González, R.; Luengo, J.; Uyarte, O.; Serafine, D.; Moya, S.; Romero, J.; Torres, R.; Kogan, M. J. Carboxymethylcellulose from Bleached Organosolv Fibers of Eucalyptus Nitens: synthesis and Physicochemical Characterization. Cellulose 2018, 25, 2901–2914. DOI: 10.1007/s10570-018-1766-7.
  • Leslie, A. D.; Mencuccini, M.; Perks, M. The Potential for Eucalyptus as a Wood Fuel in the UK. Appl. Energy 2012, 89, 176–182. DOI: 10.1016/j.apenergy.2011.07.037.
  • Pérez-Cruzado, C.; Muñoz-Sáez, F.; Basurco, F.; Riesco, G.; Rodríguez-Soalleiro, R. Combining Empirical Models and the Process-Based Model 3-PG to Predict Eucalyptus Nitens Plantations Growth in Spain. For. Ecol. Manage. 2011, 262, 1067–1077. DOI: 10.1016/j.foreco.2011.05.045.
  • Valente, C.; Gonçalves, C. I.; Monteiro, F.; Gaspar, J.; Silva, M.; Sottomayor, M.; Paiva, M. R.; Branco, M. Economic Outcome of Classical Biological Control: A Case Study on the Eucalyptus Snout Beetle, Gonipterus Platensis, and the Parasitoid Anaphes Nitens. Ecol. Econ. 2018, 149, 40–47. DOI: 10.1016/j.ecolecon.2018.03.001.
  • Penín, L.; Santos, V.; del Río, J. C.; Parajó, J. C. Assesment on the Chemical Fractionation of Eucalyptus Nitens Wood: Characterization of the Products Derived from the Structural Components. Bioresour. Technol. 2019, 281, 269–276. DOI: 10.1016/j.biortech.2019.02.098.
  • Penín, L.; Peleteiro, S.; Santos, V.; Alonso, J. L.; Parajó, J. C. Selective Fractionation and Enzymatic Hydrolysis of Eucalyptus Nitens Wood. Cellulose 2019, 26, 1125–1139. DOI: 10.1007/s10570-018-2109-4.
  • Romaní, A.; Garrote, G.; López, F.; Parajó, J. C. Eucalyptus Globulus Wood Fractionation by Autohydrolysis and Organosolv Delignification. Biores. Technol. 2011, 102, 5896–5904. DOI: 10.1016/j.biortech.2011.02.070.
  • Da Silva Perez, D.; De Araujo, E. S.; Curvelo, A. A. S. Acetone-Water Pulping of Eucalyptus Globulus and Urograndis. 1. Effect of Composition of the Solvent Mixture. Papel 1997, 58, 73–82.
  • Klamrassamee, T.; Champreda, V.; Reunglek, V.; Laosiripojana, N. Comparison of Homogeneous and Heterogeneous Acid Promoters in Single-Step Aqueous-Organosolv Fractionation of Eucalyptus Wood Chips. Biores. Technol. 2013, 147, 276–284. DOI: 10.1016/j.biortech.2013.08.015.
  • Li, Y. J.; Li, H. Y.; Cao, X. F.; Sun, S. N.; Sun, R. C. Understanding the Distribution and Structural Feature of Eucalyptus Lignin Isolated by γ-Valerolactone/Water/Acid System. ACS Sustain. Chem. Eng. 2018, 6, 12124–12131. DOI: 10.1021/acssuschemeng.8b02475.
  • Zhou, H.; Zhang, R.; Zhan, W.; Wang, L.; Guo, L.; Liu, Y. High Biomass Loadings of 40 wt% for Efficient Fractionation in Biorefineries with an Aqueous Solvent System without Adding Adscititious Catalyst. Green Chem. 2016, 18, 6108–6114. DOI: 10.1039/C6GC02225A.
  • Bhalla, A.; Cai, C. M.; Xu, F.; Singh, S. K.; Bansal, N.; Phongpreecha, T.; Dutta, T.; Foster, C. E.; Kumar, R.; Simmons, B. A.; et al. Performance of Three Delignifying Pretreatments on Hardwoods: hydrolysis Yields, Comprehensive Mass Balances, and Lignin Properties. Biotechnol. Biofuels 2019, 12, 1–15.
  • Xu, Y. H.; Zhou, Q.; Li, M. F.; Bian, J.; Peng, F. Tetrahydro-2-Furanmethanol Pretreatment of Eucalyptus to Enhance Cellulose Enzymatic Hydrolysis and to Produce High-Quality Lignin. Bioresour. Technol 2019, 280, 489–492. DOI: 10.1016/j.biortech.2019.02.088.
  • Shen, X. J.; Wen, J. L.; Mei, Q. Q.; Chen, X.; Sun, D.; Yuan, T. Q.; Sun, R. C. Facile Fractionation of Lignocelluloses by Biomass-Derived Deep Eutectic Solvent (DES) Pretreatment for Cellulose Enzymatic Hydrolysis and Lignin Valorization. Green Chem. 2019, 21, 275–283. DOI: 10.1039/C8GC03064B.
  • Hauru, L. K. J.; Ma, Y.; Hummel, M.; Alekhina, M.; King, A. W. T.; Kilpelainen, I.; Penttila, P. A.; Serimaa, R.; Sixta, H. Enhancement of Ionic Liquid-Aided Fractionation of Birchwood. Part 1: Autohydrolysis Pretreatment. RSC Adv. 2013, 3, 16365–16373. DOI: 10.1039/c3ra41529e.
  • Brandt-Talbot, A.; Gschwend, F. J. V.; Fennell, P. S.; Lammens, T. M.; Tan, B.; Weale, J.; Hallett, J. P. An Economically Viable Ionic Liquid for the Fractionation of Lignocellulosic Biomass. Green Chem. 2017, 19, 3078–3102. DOI: 10.1039/C7GC00705A.
  • Peleteiro, S.; Rivas, S.; Alonso, J. L.; Santos, V.; Parajó, J. C. Utilization of Ionic Liquids in Lignocellulose Biorefineries as Agents for Separation, Derivatization, Fractionation or Pretreatment. J. Agric. Food Chem. 2015, 63, 8093–8102. DOI: 10.1021/acs.jafc.5b03461.
  • Amarasekara, A. S. Acidic Ionic Liquids. Chem. Rev. 2016, 116, 6133–6183. DOI: 10.1021/acs.chemrev.5b00763.
  • Asim, A. M.; Uroos, M.; Naz, S.; Sultan, M.; Griffin, G.; Muhammad, N.; Khan, A. S. Acidic Ionic Liquids: Promising and Cost-Effective Solvents for Processing of Lignocellulosic Biomass. J. Mol. Liq. 2019, 287, 110943. DOI: 10.1016/j.molliq.2019.110943.
  • da Costa Lopes, A. M.; Bogel-Lukasik, R. Acidic Ionic Liquids as Sustainable Approach of Cellulose and Lignocellulosic Biomass Conversion without Additional Catalysts. ChemSusChem 2015, 8, 947–965.
  • Rigual, V.; Santos, T. M.; Domínguez, J. C.; Alonso, M. V.; Oliet, M.; Rodriguez, F. Combining Autohydrolysis and Ionic Liquid Microwave Treatment to Enhance Enzymatic Hydrolysis of Eucalyptus Globulus Wood. Bioresour. Technol. 2018, 251, 197–203. DOI: 10.1016/j.biortech.2017.12.034.
  • Gschwend, F. J. V.; Malaret, F.; Shinde, S.; Brandt-Talbot, A.; Hallett, J. P. Rapid Pretreatment of Miscanthus Using the Low-Cost Ionic Liquid Triethylammonium Hydrogen Sulfate at Elevated Temperatures. Green Chem. 2018, 20, 3486–3498. DOI: 10.1039/C8GC00837J.
  • Brandt, A.; Ray, M. J.; To, T. Q.; Leak, D. J.; Murphy, R. J.; Welton, T. Ionic Liquid Pretreatment of Lignocellulosic Biomass with Ionic Liquid-Water Mixtures. Green Chem. 2011, 13, 2489–2499. DOI: 10.1039/c1gc15374a.
  • Rivas, S.; Vila, C.; Santos, V.; Parajó, J. C. Furfural Production from Birch Hemicelluloses by Two-Step Processing: A Potential Technology for Biorefineries. Holzforschung 2016, 70, 901–910. DOI: 10.1515/hf-2015-0255.
  • López, M.; Penín, L.; Vila, C.; Santos, V.; Parajó, J. C. Multi-Stage Hydrothermal Processing of Eucalyptus Globulus Wood: An Experimental Assessment. J. Wood Chem. Technol. 2019, 39, 329–342. DOI: 10.1080/02773813.2019.1601741.
  • Gullón, P.; González-Muñoz, M. J.; Gool, M. P. V.; Schols, H. A.; Hirsch, J.; Ebringerova, A.; Parajó, J. C. Structural Features and Properties of Soluble Products Derived from Eucalyptus Globulus Hemicelluloses. Food Chem. 2011, 127, 1798–1807. DOI: 10.1016/j.foodchem.2011.02.066.
  • Rodríguez-López, J.; Romaní, A.; González-Muñoz, M. J.; Garrote, G.; Parajó, J. C. Extracting Value-Added Products before Pulping: hemicellulosic Ethanol from Eucalyptus Globulus Wood. Holzforschung 2012, 66, 591–599. DOI: 10.1515/hf-2011-0204.
  • Diz, J.; Cruz, J. M.; Domínguez, H.; Parajó, J. C. Xylitol Production from Eucalyptus Wood Hydrolyzates in Low-Cost Fermentation Media. Food Technol. Biotechnol. 2002, 40, 191–197.
  • Peleteiro, S.; Santos, V.; Garrote, G.; Parajó, J. C. Furfural Production from Eucalyptus Wood Using an Acidic Ionic Liquid. Carbohydr. Polym. 2016, 146, 20–25. DOI: 10.1016/j.carbpol.2016.03.049.
  • Peleteiro, S.; Santos, V.; Parajó, J. C. Furfural Production in Biphasic Media Using an Acidic Ionic Liquid as a Catalyst. Carbohydr. Polym. 2016, 153, 421–428. DOI: 10.1016/j.carbpol.2016.07.093.
  • Peleteiro, S.; Raspolli-Galletti, A. M.; Antonetti, C.; Santos, V.; Parajó, J. C. Manufacture of Furfural from Xylan-Containing Biomass by Acidic Processing of Hemicellulose-Derived Saccharides in Biphasic Media Using Microwave Heating. J. Wood Chem. Technol 2018, 38, 198–213. DOI: 10.1080/02773813.2017.1418891.
  • Pu, Y.; Jiang, N.; Ragauskas, A. J. Ionic Liquid as a Green Solvent for Lignin. J. Wood Chem. Technol. 2007, 27, 23–33. DOI: 10.1080/02773810701282330.
  • Rigual, V.; Santos, T. M.; Domínguez, J. C.; Alonso, M. V.; Oliet, M.; Rodriguez, F. Evaluation of Hardwood and Softwood Fractionation Using Autohydrolysis and Ionic Liquid Microwave Pretreatment. Biomass Bioenergy 2018, 117, 190–197. DOI: 10.1016/j.biombioe.2018.07.014.
  • Sun, Y. C.; Liu, X. N.; Wang, T. T.; Xue, B. L.; Sun, R. C. Green Process for Extraction of Lignin by the Microwave-Assisted Ionic Liquid Approach: Toward Biomass Biorefinery and Lignin Characterization. ACS Sustain. Chem. Eng. 2019, 7, 13062–13072. DOI: 10.1021/acssuschemeng.9b02166.
  • Pinkert, A.; Goeke, D. F.; Marsh, K. N.; Pang, S. Extracting Wood Lignin without Dissolving or Degrading Cellulose: Investigations on the Use of Food Additive-Derived Ionic Liquids. Green Chem. 2011, 13, 3124–3136. DOI: 10.1039/c1gc15671c.
  • Xu, J.; Liu, B.; Hou, H.; Hu, J. Pretreatment of Eucalyptus with Recycled Ionic Liquids for Low-Cost Biorefinery. Bioresour. Technol. 2017, 234, 406–414. DOI: 10.1016/j.biortech.2017.03.081.
  • Li, C.; Sun, L.; Simmons, B. A.; Singh, S. Comparing the Recalcitrance of Eucalyptus, Pine, and Switchgrass Using Ionic Liquid and Dilute Acid Pretreatments. Bioenerg. Res. 2013, 6, 14–23. DOI: 10.1007/s12155-012-9220-4.
  • Varanasi, P.; Singh, P.; Auer, M.; Adams, P. D.; Simmons, B. A.; Singh, S. Survey of Renewable Chemicals Produced from Lignocellulosic Biomass during Ionic Liquid Pretreatment. Biotechnol. Biofuels 2017, 6, 14. DOI: 10.1186/1754-6834-6-14.
  • Tywabi, Z.; Deenadayalu, N.; Sithole, B. Dissolution of South African Eucalyptus Sawdust Wood in [Emim][OAc]/co-Solvent Mixtures. J. Sci. Ind. Res. 2017, 76, 166–172.
  • Liu, C.; Li, Y.; Hou, Y. Effects of Alkalinity of Ionic Liquids on the Structure of Biomass in Pretreatment Process. Wood Sci. Technol. 2019, 53, 177–189. DOI: 10.1007/s00226-018-1066-2.
  • Fort, D. A.; Remsing, R. C.; Swatloski, R. P.; Moyna, P.; Moyna, G.; Rogers, R. D. Can Ionic Liquids Dissolve Wood? Processing and Analysis of Lignocellulosic Materials with 1-n-Butyl-3-Methylimidazolium Chloride. Green Chem. 2007, 9, 63–69. DOI: 10.1039/B607614A.
  • Liang, X.; Liu, J.; Fu, Y.; Chang, J. Influence of anti-Solvents on Lignin Fractionation of Eucalyptus Globulus via Green Solvent System Pretreatment. Sep. Purif. Technol. 2016, 163, 258–266. DOI: 10.1016/j.seppur.2016.03.006.
  • Sun, Y. C.; Xu, J. K.; Xu, F.; Sun, R. C. Efficient Separation and Physico-Chemical Characterization of Lignin from Eucalyptus Using Ionic Liquid-Organic Solvent and Alkaline Ethanol Solvent. Ind. Crops Prod. 2013, 47, 277–285. DOI: 10.1016/j.indcrop.2013.03.025.
  • Li, H. Y.; Chen, X.; Wang, C. Z.; Sun, S. N.; Sun, R. C. Evaluation of the Two-Step Treatment with Ionic Liquids and Alkali for Enhancing Enzymatic Hydrolysis of Eucalyptus: chemical and Anatomical Changes. Biotechnol. Biofuels 2016, 9, 166.
  • Hou, X.; Wang, Z.; Sun, J.; Li, M.; Wang, S.; Chen, K.; Gao, Z. A Microwave-Assisted Aqueous Ionic Liquid Pretreatment to Enhance Enzymatic Hydrolysis of Eucalyptus and Its Mechanism. Bioresour. Technol. 2019, 272, 99–104. DOI: 10.1016/j.biortech.2018.10.003.
  • Halder, P.; Kundu, S.; Patel, S.; Ramezani, M.; Parthasarathy, R.; Shah, K. A. Comparison of Ionic Liquids and Organic Solvents on the Separation of Cellulose-Rich Material from River Red Gum. Bioenerg. Res. 2019, 12, 275–291. DOI: 10.1007/s12155-019-09967-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.