107
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Formation regulation of various rosin esters and intensification mechanism using pressurized CO2

, , , , , & show all

References

  • Parada, M. P.; Osseweijer, P.; Duque, J. A. P. Sustainable Biorefineries, an Analysis of Practices for Incorporating Sustainability in Biorefinery Design. Ind. Crop. Prod. 2017, 106, 105–123.
  • Kugler, S.; Ossowicz, P.; Malarczyk-Matusiak, K.; Wierzbicka, E. Advances in Rosin-Based Chemicals: The Latest Recipes, Applications and Future Trends. Molecules 2019, 24, 1651. DOI: 10.3390/molecules24091651.
  • Yan, X.; Zhai, Z.; Song, Z.; Shang, S.; Rao, X. Synthesis and Properties of Polyester-Based Polymeric Surfactants from Diterpenic Rosin. Ind. Crop. Prod. 2017, 108, 371–378. DOI: 10.1016/j.indcrop.2017.06.060.
  • Dahlen, J.; Nicholas, D. D.; Schultz, T. P. Water Repellency and Dimensional, Stability of Southern Pine Decking Treated with Waterborne Resin Acids. J. Wood Chem. Technol. 2008, 28, 47–54. DOI: 10.1080/02773810801916472.
  • Zinkel, D. F. Quantitative Separation of Ether-Soluble Acidic and Neutral Materials. J. Wood Chem. Technol. 1983, 3, 131–143. DOI: 10.1080/02773818308085156.
  • Lin, H. X.; Yang, M. S.; Tian, C.; Han, C. R.; Song, J.; Duan, J. F.; Jiang, J. X. Design of Diversified Self-Assembly Systems Based on a Natural Rosin-Based Tertiary Amine for Doxorubicin Delivery and Excellent Emulsification. Colloids Surf. B Biointerfaces 2018, 165, 191–198. DOI: 10.1016/j.colsurfb.2018.01.049.
  • Gu, Y.; Li, Y.; Zhang, J.; Zhang, H.; Wu, C.; Lin, J.; Zhou, J.; Fan, Y.; Murugadoss, V.; Guo, Z. Effects of Pretreated Carbon Supports in Pd/C Catalysts on Rosin Disproportionation Catalytic Performance. Chem. Eng. Sci. 2020, 216, 115588. DOI: 10.1016/j.ces.2020.115588.
  • Song, Z. Q.; Zavarin, E.; Zinkel, D. F. On the Palladium-On-Charcoal Disproportionate of Rosin. J. Wood Chem. Technol. 1985, 5, 535–542. DOI: 10.1080/02773818508085210.
  • Mirabedini, S. M.; Zareanshahraki, F.; Mannari, V. Enhancing Thermoplastic Road-Marking Paints Performance Using Sustainable Rosin Ester. Prog. Org. Coat. 2020, 139, 105454. DOI: 10.1016/j.porgcoat.2019.105454.
  • Dunlop-Jones, N.; Douek, M.; Jialing, H.; Allen, L. H.; Dorris, G. M. The Effects of Certain Chemical Additives on the Deresination of Trembling Aspen in Kraft Pulping. J. Wood Chem. Technol. 1989, 9, 365–386. DOI: 10.1080/02773818908050305.
  • Karakus, S.; Ilgar, M.; Kahyaoglu, I. M.; Kilislioglu, A. Influence of Ultrasound Irradiation on the Intrinsic Viscosity of Guar gum-PEG/Rosin Glycerol Ester Nanoparticles. Int. J. Biol. Macromol. 2019, 141, 1118–1127. DOI: 10.1016/j.ijbiomac.2019.08.254.
  • Ladero, M.; de Gracia, M.; Trujillo, F.; Garcia-Ochoa, F. Phenomenological Kinetic Modelling of the Esterification of Rosin and Polyols. Chem. Eng. J. 2012, 197, 387–397. DOI: 10.1016/j.cej.2012.05.053.
  • Nosal, H.; Nowicki, J.; Warzała, M.; Nowakowska-Bogdan, E.; Zarębska, M. Synthesis and Characterization of Alkyd Resins Based on Camelina Sativa Oil and Polyglycerol. Prog. Org. Coat. 2015, 86, 59–70. DOI: 10.1016/j.porgcoat.2015.04.009.
  • Ma, G.; Zhang, T.; Wu, J.; Hou, C.; Ling, L.; Wang, B. Preparation and Properties of Glycerin Ester of Tung Oil Modified Rosin. J. Appl. Polym. Sci. 2013, 130, 1700–1706. DOI: 10.1002/app.39366.
  • Behr, A.; Eilting, J.; Irawadi, K.; Leschinski, J.; Lindner, F. Improved Utilisation of Renewable Resources: new Important Derivatives of Glycerol. Green Chem. 2008, 10, 13–30. DOI: 10.1039/B710561D.
  • Nan, Y.; Liu, J.; Lin, R.; Tavlarides, L. L. Production of Biodiesel from Microalgae Oil (Chlorella Protothecoides) by Non-Catalytic Transesterification in Supercritical Methanol and Ethanol: Process Optimization. J. Supercrit. Fluid 2015, 97, 174–182. DOI: 10.1016/j.supflu.2014.08.025.
  • Quitain, A. T.; Mission, E. G.; Sumigawa, Y.; Sasaki, M. Supercritical Carbon Dioxide-Mediated Esterification in a Microfluidic Reactor. Chem. Eng. Process. Process Intensif. 2018, 123, 168–173. DOI: 10.1016/j.cep.2017.11.002.
  • Relvas, F. M.; Morais, A. R. C.; Bogel-Lukasik, R. Kinetic Modeling of Hemicellulose-Derived Biomass Hydrolysis under High Pressure CO2-H2O Mixture Technology. J. Supercrit. Fluid 2015, 99, 95–102. DOI: 10.1016/j.supflu.2015.01.022.
  • Lachos-Perez, D.; Tompsett, G. A.; Guerra, P.; Timko, M. T.; Rostagno, M. A.; Martínez, J.; Forster-Carneiro, T. Sugars and Char Formation on Subcritical Water Hydrolysis of Sugarcane Straw. Bioresour. Technol. 2017, 243, 1069–1077. DOI: 10.1016/j.biortech.2017.07.080.
  • Liang, J.; Chen, X.; Wang, L.; Wei, X.; Wang, H.; Lu, S.; Li, Y. Subcritical Carbon Dioxide-Water Hydrolysis of Sugarcane Bagasse Pith for Reducing Sugars Production. Bioresour. Technol. 2017, 228, 147–155. DOI: 10.1016/j.biortech.2016.12.080.
  • Martin, A.; Silva, V.; Perez, L.; Garcia-Serna, J.; Cocero, M. J. Direct Synthesis of Linalyl Acetate from Linalool in Supercritical Carbon Dioxide: A Thermodynamic Study. Chem. Eng. Technol. 2007, 30, 726–731.
  • Schrems, M.; Liebner, F.; Betz, M.; Zeilinger, M.; Böhmdorfer, S.; Rosenau, T.; Potthast, A. Understanding the Impact of Supercritical Carbon Dioxide on the Delignification Mechanism during Organosolv Pulping: A Model Compound Study. J. Wood Chem. Technol. 2012, 32, 225–237. DOI: 10.1080/02773813.2011.652856.
  • Cvjetko Bubalo, M.; Vidović, S.; Radojčić Redovniković, I.; Jokić, S. Green Solvents for Green Technologies. J. Chem. Technol. Biotechnol. 2015, 90, 1631–1639. DOI: 10.1002/jctb.4668.
  • Hunter, S. E.; Savage, P. E. Quantifying Rate Enhancements for Acid Catalysis in CO2-Condensed High- Temperature Water. AIChE J. 2008, 54, 516–528. DOI: 10.1002/aic.11392.
  • Dias, A. L. B.; dos Santos, P.; Martínez, J. Supercritical CO2 Technology Applied to the Production of Flavor Ester Compounds through Lipase-Catalyzed Reaction: A Review. J. CO2 Util. 2018, 23, 159–178. DOI: 10.1016/j.jcou.2017.11.011.
  • Kruse, A.; Vogel, H. Heterogeneous Catalysis in Supercritical media-I. Carbon Dioxide. Chem. Eng. Technol. 2008, 31, 23–32. DOI: 10.1002/ceat.200700366.
  • Zhou, D.; Wang, L.; Chen, X.; Wei, X.; Liang, J.; Zhang, D.; Ding, G. A Novel Acid Catalyst Based on Super/Subcritical CO2-Enriched Water for the Efficient Esterification of Rosin. R Soc. Open Sci. 2018, 5, 171031. DOI: 10.1098/rsos.171031.
  • Qiu, H.; Chen, X.; Wei, X.; Liang, J.; Zhou, D.; Wang, L. The Emulsifying Properties of Hydrogenated Rosin Xylitol Ester as a Biomass Surfactant for Food: Effect of pH and Salts. Molecules 2020, 25, 302. DOI: 10.3390/molecules25020302.
  • Zhaobang, S. Production and Standards for Chemican Non-Wood Forest Products in China. CIFOR report no. 6, 1995; ISSN 0854–9818.
  • van Walsu, G. P. Severity Function Describing the Hydrolysis of Xylan Using Carbonic Acid. Appl. Biochem. Biotechnol. 2001, 91, 317–329.
  • Saharay, M.; Balasubramanian, S. Electron Donor-Acceptor Interactions in ethanol-CO2 Mixtures: An ab Initio Molecular Dynamics Study of Supercritical Carbon Dioxide. J. Phys. Chem. B. 2006, 110, 3782–3790. DOI: 10.1021/jp053839f.
  • Cu, Y.; Chen, Y. X.; Zhao, Z. D.; Guo, C. T.; Li, D. M.; Bi, L. W. Study on Chromaticity Variation Relationships of Rosin under High Temperature Treatment. Adv. Mater. Res. 2012, 396, 1157–1163.
  • Zhang, D.; Zhou, D.; Wei, X.; Liang, J.; Chen, X.; Wang, L. Green Catalytic Conversion of Hydrogenated Rosin to Glycerol Esters Using Subcritical CO2 in Water and the Associated Kinetics. J. Supercrit. Fluid 2017, 125, 12–21. DOI: 10.1016/j.supflu.2017.01.009.
  • Tong, D. S.; Zheng, Y. M.; Yu, W. H.; Wu, L. M.; Zhou, C. H. Catalytic Cracking of Rosin over Acid-Activated Montmorillonite Catalysts. Appl. Clay Sci. 2014, 100, 123–128. DOI: 10.1016/j.clay.2014.07.018.
  • Gomes, G. J.; Zalazar, M. F.; Lindino, C. A.; Scremin, F. R.; Bittencourt, P. R.; Costa, M. B.; Peruchena, N. M. Adsorption of Acetic Acid and Methanol on H-Beta Zeolite: An Experimental and Theoretical Study. Micropor. Mesopor. Mat. 2017, 252, 17–28.
  • Lin, B.; Zhou, J.; Qin, Q.; Song, X.; Luo, Z. Thermal Behavior and Gas Evolution Characteristics during co-Pyrolysis of Lignocellulosic Biomass and Coal: A TG-FTIR Investigation. J. Anal. Appl. Pyrol 2019, 144, 104718. DOI: 10.1016/j.jaap.2019.104718.
  • Cheon, Y. H.; Kim, K. J.; Kim, S. H. A Study on Crystallization Kinetics of Pentaerythritol in a Batch Cooling Crystallizer. Chem. Eng. Sci. 2005, 60, 4791–4802. DOI: 10.1016/j.ces.2005.03.035.
  • Zheng, X.; Jiang, Z.; Ying, Z.; Song, J.; Chen, W.; Wang, B. Role of Feedstock Properties and Hydrothermal Carbonization Conditions on Fuel Properties of Sewage Sludge-Derived Hydrochar Using Multiple Linear Regression Technique. Fuel 2020, 271, 117609. DOI: 10.1016/j.fuel.2020.117609.
  • Stoichev, T.; Tessier, E.; Coelho, J. P.; Lobos Valenzuela, M. G.; Pereira, M. E.; Amouroux, D. Multiple Regression Analysis to Assess the Spatial Distribution and Speciation of Mercury in Surface Sediments of a Contaminated Lagoon. J. Hazard. Mater. 2019, 367, 715–724. DOI: 10.1016/j.jhazmat.2018.12.109.
  • McMurry, J. Organic Chemistry, 9th ed.; Cengage Learning: New York, 2015; pp 690.
  • Lafrad, F.; Idrissi, A.; Tassaing, T. What is the State of Aggregation of Ethanol Molecules in Ethanol-Supercritical Carbon Dioxide Mixtures? An FTIR Investigation in the Full Molar Fraction Range. J. Supercrit. Fluid 2014, 94, 65–70. DOI: 10.1016/j.supflu.2014.06.020.
  • Xu, W. H.; Yang, J. C.; Hu, Y. Y. Microscopic Structure and Interaction Analysis for Supercritical Carbon Dioxide-Ethanol Mixtures: A Monte Carlo Simulation Study. J. Phys. Chem. B. 2009, 113, 4781–4789. DOI: 10.1021/jp810193b.
  • Guan, Q.; Shang, H.; Liu, J.; Gu, J.; Li, B.; Miao, R.; Chen, Q.; Ning, P. Biodiesel from Transesterification at Low Temperature by AlCl3 Catalysis in Ethanol and Carbon Dioxide as Cosolvent: process, Mechanism and Application. Appl. Energ. 2016, 164, 380–386. DOI: 10.1016/j.apenergy.2015.11.029.
  • Skarmoutsos, I.; Guardia, E.; Samios, J. Hydrogen Bond, Electron Donor-Acceptor Dimer, and Residence Dynamics in Supercritical CO2-Ethanol Mixtures and the Effect of Hydrogen Bonding on Single Reorientational and Translational Dynamics: A Molecular Dynamics Simulation Study. J. Chem. Phys 2010, 133, 14504. DOI: 10.1063/1.3449142.
  • West, K. N.; Wheeler, C.; McCarney, J. P.; Griffith, K. N.; Bush, D.; Liotta, C. L.; Eckert, C. A. In Situ Formation of Alkylcarbonic Acids with CO2. J. Phys. Chem. A. 2001, 105, 3947–3948. DOI: 10.1021/jp003846y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.