159
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Selective hydrogenation of ethyne with highly-dispersed sub-2 nm Pd nanoparticles in a hemicellulosic gel-based microreaction chamber

, , &

References

  • Liu, Y. N.; McCue, A. J.; Miao, C. L.; Feng, J. T.; Li, D. Q.; Anderson, J. A. Palladium Phosphide Nanoparticles as Highly Selective Catalysts for the Selective Hydrogenation of Acetylene. J. Catal. 2018, 364, 406–414. DOI: 10.1016/j.jcat.2018.06.001.
  • Huang, B.; Wang, T.; Yang, Z.; Qian, W.; Long, J.; Zeng, G.; Lei, C. Iron-Based Bimetallic Nanocatalysts for Highly Selective Hydrogenation of Acetylene in N,N-Dimethylformamide at Room Temperature. ACS Sustain. Chem. Eng. 2017, 5, 1668–1674. DOI: 10.1021/acssuschemeng.6b02413.
  • Kim, E.; Shin, E. W.; Bark, C. W.; Chang, I.; Yoon, W. J.; Kim, W.-J. Pd Catalyst Promoted by Two Metal Oxides with Different Reducibilities: Properties and Performance in the Selective Hydrogenation of Acetylene. Appl. Catal. A Gen. 2014, 471, 80–83. DOI: 10.1016/j.apcata.2013.11.036.
  • Liu, Y. N.; McCue, A. J.; Feng, J. T.; Guan, S. L.; Li, D. Q.; Anderson, J. A. Evolution of Palladium Sulfide Phases During Thermal Treatments and Consequences for Acetylene Hydrogenation. J. Catal. 2018, 364, 204–215. DOI: 10.1016/j.jcat.2018.05.018.
  • Ding, L. B.; Yi, H.; Zhang, W. H.; You, R.; Cao, T.; Yang, J. L.; Lu, J. L.; Huang, W. X. Activating Edge Sites on Pd Catalysts for Selective Hydrogenation of Acetylene via Selective Ga2O3 Decoration. ACS Catal. 2016, 6, 3700–3707. DOI: 10.1021/acscatal.6b00702.
  • Borodziński, A.; Bond, G. C. Selective Hydrogenation of Ethyne in Ethene-Rich Streams on Palladium Catalysts, Part 2: Steady-State Kinetics and Effects of Palladium Particle Size, Carbon Monoxide, and Promoters. Catal. Rev. Sci. Eng. 2008, 50, 379–469. DOI: 10.1080/01614940802142102.
  • Mei, D.; Sheth, P. A.; Neurock, M.; Smith, C. M. First-Principles-Based Kinetic Monte Carlo Simulation of the Selective Hydrogenation of Acetylene over Pd(111). J. Catal. 2006, 242, 1–15. DOI: 10.1016/j.jcat.2006.05.009.
  • Komhom, S.; Mekasuwandumrong, O.; Praserthdam, P.; Panpranot, J. Improvement of Pd/Al2O3 Catalyst Performance in Selective Acetylene Hydrogenation Using Mixed Phases Al2O3 Support. Catal. Commun. 2008, 10, 86–91. DOI: 10.1016/j.catcom.2008.07.039.
  • Ruta, M.; Laurenczy, G.; Dyson, P. J.; Kiwi-Minsker, L. Pd Nanoparticles in a Supported Ionic Liquid Phase: Highly Stable Catalysts for Selective Acetylene Hydrogenation under Continuous-Flow Conditions. J. Phys. Chem. C. 2008, 112, 17814–17819. DOI: 10.1021/jp806603f.
  • Vignola, E.; Steinmann, S. N.; Al Farra, A.; Vandegehuchte, B. D.; Curulla, D.; Sautet, P. Evaluating the Risk of C–C Bond Formation during Selective Hydrogenation of Acetylene on Palladium. ACS Catal. 2018, 8, 1662–1671. DOI: 10.1021/acscatal.7b03752.
  • Vile, G.; Bridier, B.; Wichert, J.; Perez-Ramirez, J. Ceria in Hydrogenation Catalysis: High Selectivity in the Conversion of Alkynes to Olefins. Angew. Chem. Int. Ed. Engl. 2012, 51, 8620–8623. DOI: 10.1002/anie.201203675.
  • Zhou, H. R.; Yang, X. F.; Li, L.; Liu, X. Y.; Huang, Y. Q.; Pan, X. L.; Wang, A. Q.; Li, J.; Zhang, T. PdZn Intermetallic Nanostructure with Pd-Zn-Pd Ensembles for Highly Active and Chemoselective Semi-Hydrogenation of Acetylene. ACS Catal. 2016, 6, 1054–1061. DOI: 10.1021/acscatal.5b01933.
  • Han, Y. W.; Shen, J. Y.; Chen, Y. Microkinetic Analysis of Isopropanol Dehydrogenation over Cu/SiO2 Catalyst. Appl. Catal. A Gen. 2001, 205, 79–84. DOI: 10.1016/S0926-860X(00)00559-7.
  • Chikan, V.; Molnar, A.; Balazsik, K. One-Step Synthesis of Methyl Isobutyl Ketone from Acetone and Hydrogen over Cu-on-MgO Catalysts. J. Catal. 1999, 184, 134–143.
  • Kozhevnikova, E. F.; Kozhevnikov, I. V. One-Step Synthesis of Methyl Isobutyl Ketone from Acetone Catalysed by Pd Supported on Zn-II-Cr-III Mixed Oxide. J. Catal. 2006, 238, 286–292. DOI: 10.1016/j.jcat.2005.11.028.
  • Park, Y. H.; Price, G. L. Potassium Promoter for Palladium on Alumina Selective Hydrogenation Catalysis. J. Chem. Soc. Chem. Commun. 1991, 17, 1188–1189. DOI: 10.1039/c39910001188.
  • McCue, A. J.; McKenna, F. M.; Anderson, J. A. Triphenylphosphine: A Ligand for Heterogeneous Catalysis Too? Selectivity Enhancement in Acetylene Hydrogenation over Modified Pd/TiO2 Catalyst. Catal. Sci. Technol. 2015, 5, 2449–2459. DOI: 10.1039/C5CY00065C.
  • Kotte, M. R.; Kuvarega, A. T.; Cho, M.; Mamba, B. B.; Diallo, M. S. Mixed Matrix PVDF Membranes with in Situ Synthesized PAMAM Dendrimer-Like Particles: A New Class of Sorbents for Cu(II) Recovery from Aqueous Solutions by Ultrafiltration. Environ. Sci. Technol. 2015, 49, 9431–9442. DOI: 10.1021/acs.est.5b01594.
  • Persson, T.; Jonsson, A.-S. Characterization of Hemicelluloses in Process Streams in Thermomechanical and Chemi-Thermomechanical Pulp Mills. J. Wood Chem. Technol. 2017, 37, 184–190. DOI: 10.1080/02773813.2016.1271433.
  • Guan, Q.-Q.; Zhou, H.-J.; Peng, L.-C.; Chen, K.-L.; He, L.; Chai, X.-S.; Sun, B. Mathematical Model for Predicting the Dissolution Behaviors of Hemicelluloses During Cold Caustic Extraction Process. AIChE J. 2019, 65, 13–17. DOI: 10.1002/aic.16387.
  • Vena, P. F.; García-Aparicio, M. P.; Brienzo, M.; Görgens, J. F.; Rypstra, T. Effect of Alkaline Hemicellulose Extraction on Kraft Pulp Fibers from Eucalyptus Grandis. J. Wood Chem. Technol. 2013, 33, 157–173. DOI: 10.1080/02773813.2013.773040.
  • Li, W.; Zhou, X. Modification of the Water-Insoluble Hemicelluloses via Free Radical Copolymerization in Diluted Alkali Aqueous Medium. J. Wood Chem. Technol. 2017, 37, 191–200. DOI: 10.1080/02773813.2016.1271434.
  • Guan, Q.; Zeng, Y.; Shen, J.; Chai, X.-S.; Gu, J.; Miao, R.; Li, B.; Ning, P. Selective Hydrogenation of Phenol by Phosphotungstic Acid Modified Pd/Ce–AlOx Catalyst in High-Temperature Water System. Chem. Eng. J. 2016, 299, 63–73. DOI: 10.1016/j.cej.2016.03.105.
  • Guan, Q.; Yang, C.; Wang, S.; He, L.; Kong, Z.; Chai, X.; Xin, H.; Ning, P. Reactive Metal–Biopolymer Interactions for Semihydrogenation of Acetylene. ACS Catal. 2019, 9, 11146–11152. DOI: 10.1021/acscatal.9b04042.
  • Peng, X.; W.; Ren, J-l.; Zhong, L-x.; Sun, R-c. Nanocomposite Films Based on Xylan-Rich Hemicelluloses and Cellulose Nanofibers with Enhanced Mechanical Properties. Biomacromolecules 2011, 12, 3321–3329. DOI: 10.1021/bm2008795.
  • Son, S. U.; Jang, Y.; Park, J.; Na, H. B.; Park, H. M.; Yun, H. J.; Lee, J.; Hyeon, T. Designed Synthesis of Atom-Economical Pd/Ni Bimetallic Nanoparticle-Based Catalysts for Sonogashira Coupling Reactions. J. Am. Chem. Soc. 2004, 126, 5026–5027. DOI: 10.1021/ja039757r.
  • Chen, W.; Zhong, L-x.; Peng, X-w.; Wang, K.; Chen, Z-f.; Sun, R-C. Xylan-Type Hemicellulose Supported Palladium Nanoparticles: A Highly Efficient and Reusable Catalyst for the Carbon-Carbon Coupling Reactions. Catal. Sci. Technol. 2014, 4, 1426–1435. DOI: 10.1039/C3CY00933E.
  • Zhao, X.; Zhang, Q.; Zhang, B.; Chen, C.-M.; Wang, A.; Zhang, T.; Su, D. S. Dual-Heteroatom-Modified Ordered Mesoporous Carbon: Hydrothermal Functionalization, Structure, and its Electrochemical Performance. J. Mater. Chem. 2012, 22, 4963–4969. DOI: 10.1039/c2jm15820e.
  • Wu, Z.; Webley, P. A.; Zhao, D. Post-Enrichment of Nitrogen in Soft-Templated Ordered Mesoporous Carbon Materials for Highly Efficient Phenol Removal and CO2 Capture. J. Mater. Chem. 2012, 22, 11379–11389. DOI: 10.1039/c2jm16183d.
  • Wang, J.; Liu, H.; Diao, J.; Gu, X.; Wang, H.; Rong, J.; Zong, B.; Su, D. S. Size-Controlled Nitrogen-Containing Mesoporous Carbon Nanospheres by One-Step Aqueous Self-Assembly Strategy. J. Mater. Chem. A. 2015, 3, 2305–2313. DOI: 10.1039/C4TA05820H.
  • Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon 2007, 45, 1558–1565. DOI: 10.1016/j.carbon.2007.02.034.
  • Chen, Y.; Zhang, X.; Yu, P.; Ma, Y. Electrophoretic Deposition of Graphene Nanosheets on Nickel Foams for Electrochemical Capacitors. J. Power Sources 2010, 195, 3031–3035. DOI: 10.1016/j.jpowsour.2009.11.057.
  • Li, X.; Dong, F.; Zhang, L.; Xu, Q.; Zhu, X.; Liang, S.; Hu, L.; Xie, H. Cellulosic Protic Ionic Liquids Hydrogel: A Green and Efficient Catalyst Carrier for Pd Nanoparticles in Reduction of 4-Nitrophenol in Water. Chem. Eng. J. 2019, 372, 516–525. DOI: 10.1016/j.cej.2019.04.123.
  • He, W.; Hu, H. Rapid Prediction of Different Wood Species Extractives and Lignin Content Using Near Infrared Spectroscopy. J. Wood Chem. Technol. 2013, 33, 52–64. DOI: 10.1080/02773813.2012.731463.
  • Edwards, H. G. M.; Hunt, D. E.; Sibley, M. G. FT-Raman Spectroscopic Study of Keratotic Materials: Horn, Hoof and Tortoiseshell. Spectrochim. Acta A Atom. Spectrosc. 1998, 54, 745–757. DOI: 10.1016/S1386-1425(98)00013-4.
  • Wu, Y.; Zhang, T.; Xie, M.; Zhou, g. Optical and Electrical Properties of Polymer Modified by Cu and Ni Ion Implantation. J. Appl. Biomater. Funct. Mater. 2002, 33, 96–97, 100.
  • Mahdavinia, G. R.; Mousanezhad, S.; Hosseinzadeh, H.; Darvishi, F.; Sabzi, M. Magnetic Hydrogel Beads Based on PVA/Sodium Alginate/Laponite RD and Studying Their BSA Adsorption. Carbohydr. Polym. 2016, 147, 379–391. DOI: 10.1016/j.carbpol.2016.04.024.
  • Baran, T.; Yılmaz Baran, N.; Menteş, A. Sustainable Chitosan/Starch Composite Material for Stabilization of Palladium Nanoparticles: Synthesis, Characterization and Investigation of Catalytic Behaviour of Pd@Chitosan/Starch Nanocomposite in Suzuki–Miyaura Reaction. Appl. Organometal. Chem. 2018, 32, e4075. DOI: 10.1002/aoc.4075.
  • Salas, C.; Nypelö, T.; Rodriguez-Abreu, C.; Carrillo, C.; Rojas, O. J. Nanocellulose Properties and Applications in Colloids and Interfaces. Curr. Opin. Colloid Interface Sci. 2014, 19, 383–396. DOI: 10.1016/j.cocis.2014.10.003.
  • Cao, T.; You, R.; Zhang, X.; Chen, S.; Li, D.; Zhang, Z.; Huang, W. An In Situ DRIFTS Mechanistic Study of CeO2-Catalyzed Acetylene Semihydrogenation Reaction. Phys. Chem. Chem. Phys. 2018, 20, 9659–9670. DOI: 10.1039/c8cp00668g.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.