144
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Differences in the physicochemical properties of lignins in the heartwood and sapwood of Pinus sylvestris

, , &

References

  • Bogolitsyn, K. G.; Lunin, V. V. Physical Chemistry of Lignin. Academkniga: Moscow, 2010; p. 492.
  • Heitner, C.; Dimmel, D.; Schmidt, J. A. Lignin and Lignans: Advances in Chemistry. CRS Press: Boca Raton, 2010; p. 683.
  • Gorshkova, T. A.; Mikshina, P. V.; Guryanov, O. P.; Chemikosova, S. B. Formation of the Supramolecular Structure of the Plant Cell Wall. Biochemistry. 2010, 175, 196–213. DOI: 10.1134/s0006297910020069.
  • Tsutsumi, Y.; Kondo, R.; Sakai, K.; Imamura, H. Difference in Reactivity between Syringyl and Guaiacyl Lignin in Alkaline Systems. Holzforschung. 1995, 49, 423–428. DOI: 10.1515/hfsg.1995.49.5.423.
  • Bogolitsyn, K. G.; Gusakova, M. A.; Khviyuzov, S. S.; Zubov, I. N. Physicochemical Properties of Conifer Lignins Using Juniperus Communis as an Example. Chem. Nat. Compd. 2014, 50, 337–341. DOI: 10.1007/s10600-014-0946-4.
  • Evstigneyev, E. I.; Shevchenko, S. M. Structure, Chemical Reactivity and Solubility of Lignin: A Fresh Look. Wood Sci. Technol. 2019, 53, 7–47. DOI: 10.1007/s00226-018-1059-1.
  • Raiskila, S.; Pulkkinen, M.; Laakso, T.; Fagerstedt, K.; Löija, M.; Mahlberg, R.; Paajanen, L.; Ritschkoff, A.; Saranpää, P. FTIR Spectroscopic Prediction of Klason and Acid Soluble Lignin Variation in Norway Spruce Cutting Clones. Silva Fenn. 2007, 41, 351–371. DOI: 10.14214/sf.301.
  • Lourenço, A.; Neiva, D. M.; Gominho, J.; Marques, A. V.; Pereira, H. Characterization of Lignin in Heartwood, Sapwood and Bark from Tectona Grandis Using Py–GC–MS/FID. Wood Sci. Technol. 2015, 49, 159–175. DOI: 10.1007/s00226-014-0684-6.
  • Campbell, A. G.; Kim, W.-J.; Koch, P. Chemical Variation in Lodgepole Pine with Sapwood/Heartwood, Stem Height, and Variety. Wood Fiber Sci. 1990, 22, 22–30.
  • Benouadah, N.; Aliouche, D.; Pranovich, A.; Willför, S. Chemical Characterization of Pinus Halepensis Sapwood and Heartwood. Wood Mat. Sci. Eng. 2019, 14, 157–164. DOI: 10.1080/17480272.2018.1448436.
  • Sumerskiy, I.; Pranovich, A.; Holmbom, B.; Willför, S. Lignin and Other Aromatic Substances Released from Spruce Wood during Pressurized Hot-Water Extraction, Part 1: Extraction, Fractionation and Physico-Chemical Characterization. Wood Chem. Technol. 2015, 35, 387–397. DOI: 10.1080/02773813.2014.965331.
  • Rencoret, J.; Gutiérrez, A.; Nieto, L.; Jiménez-Barbero, J.; Faulds, C. B.; Kim, H.; Ralph, J.; Martínez, A. T.; Del Río, J. C. Lignin Composition and Structure in Young versus Adult Eucalyptus Globulus Plants. Plant Physiol. 2011, 155, 667–682. DOI: 10.1104/pp.110.167254.
  • Bogolitsyn, K. G.; Khviuzov, S. S.; Gusakova, M. A.; Pustynnaya, M. A.; Krasikova, A. A. The Differences between Acid-Base and Redox Properties of Phenolic Structures of Coniferous and Deciduous Native Lignins. Wood Sci. Technol. 2018, 52, 1153–1164. DOI: 10.1007/s00226-018-1008-z.
  • Obolenskaya, A. V.; El’nitskaya, Z. P.; Leonovich, A. L. Laboratory Studies of Wood and Cellulose Chemistry. Ecology, Moscow, 1991; p. 320.
  • Pepper, J. M.; Wood, P. D. S. The Isolation of a Representative Lignin Fraction from Wood and Straw Meals. Can. J. Chem. 1962, 40, 1026–1028. DOI: 10.1139/v62-153.
  • Zakis, G. F. Functional Analysis of Lignins and Their Derivatives. GaTAPPI Press: Atlanta, 1994; p. 94.
  • Lin, S. Y.; Dence, C. W. Methods in Lignin Chemistry. Springer-Verlag: Berlin, 1992; p. 578.
  • Determann, H. Gel Chromatography. Springer-Verlag: Berlin, 1969; p. 202.
  • Kosyakov, D. S.; Hviyuzov, S. S.; Gorbova, N. S.; Bogolitsyn, K. G. Protolytic Properties of Lignin in Binary Mixtures of Water with Aprotic Solvents. Russ. J. Appl. Chem. 2013, 86, 1064–1069. DOI: 10.1134/S1070427213070197.
  • Blythe, T.; Bloor, D. Electrical Properties of Polymers. Cambridge University Press: Cambridge, 2005, p. 480.
  • Khviyuzov, S.; Bogolitsyn, K.; Volkov, A.; Koposov, G.; Gusakova, M. Features of Frequency Dependence of Electrical Conductivity and Dielectric Properties in Lignins from Conifers and Deciduous Trees. Holzforschung. 2020, 74, 1113–1122. DOI: 10.1515/hf-2019-0149.
  • Sarkanen, K. V.; Ludwig, C. H. Lignins: Occurrence, Formation, Structure and Reactions. Wiley: New York, 1971; p. 916.
  • Pandey, K. K. A Study of Chemical Structure of Soft and Hardwood and Wood Polymers by FTIR Spectroscopy. J. Appl. Polym. Sci. 1999, 71, 1969–1975. DOI: 10.1002/(sici)1097-4628(19990321)71:12<1969:aid-app6>3.0.co;2-d.
  • Santos, R. B.; Hart, P. W.; Jameel, H. Hou-Min Chang Wood Based Lignin Reactions Important to the Biorefinery and Pulp and Paper Industries. BioRes. 2013, 8, 1456–1477. DOI: 10.15376/biores.8.1.1456-1477.
  • Yokoyama, T.; Matsumoto, Y. Revisiting the Mechanism of β-O-4 Bond Cleavage during Acidolysis of Lignin. Part 2: Detailed Reaction Mechanism of a Nonphenolic C6-C2 Type Model Compound. Wood Chem. Technol. 2010, 30, 269–282. DOI: 10.1080/02773811003675288.
  • Ragnar, M.; Lindgren, C. T.; Nilvebrant, N. O. pKa-Values of Guaiacyl and Syringyl Phenols Related to Lignin. J. Wood Chem. Technol. 2000, 20, 277–305. DOI: 10.1080/02773810009349637.
  • Maksimov, I. V.; Cherepanova, E. A.; Burkhanova, G. F.; Sorokan', A. V.; Kuzmina, O. I. Structural-Functional Features of Plant Isoperoxidases. Biochemistry. 2011, 76, 609–621. DOI: 10.1134/S0006297911060010.
  • Gracё, M. P. F.; Rudnitskaya, A.; Fernando, A. C.; Faria, F. A. C.; Evtuguin, D. V.; Gomes, M. T. S. R.; Oliveira, J. A. B. P.; Costa, L. C. Electrochemical Impedance Study of the Lignin-Derived Conducting Polymer. Electrochim. Acta. 2012, 76, 69–76. DOI: 10.1016/j.electacta.2012.04.155.
  • Zhang, H.; Dou, C.; Pal, L.; Hubbe, M. A. Review of Electrically Conductive Composites and Films Containing Cellulosic Fibers or Nanocellulose. Biores. 2019, 14, 7494–7542. DOI: 10.15376/biores.12.1.2143-2233.
  • Tonkonogov, M. P. Dielectric Spectroscopy of Hydrogenbonded Crystals, and Proton Relaxation. Phys.-Usp. 1998, 41, 25–48. DOI: 10.1070/PU1998v041n01ABEH000328.
  • Jonscher, A. K. Dielectric Relaxation in Solids. J. Phys. D Appl. Phys. 1999, 32, R57–70. [Database] DOI: 10.1088/0022-3727/32/14/201.
  • Gorokhovatskii, Y. A.; Karulina, E. A.; Temnov, D. E. Physics of Polymer Dielectrics 2013. RGPU, St. Petersburg, p. 124.
  • Volkov, A. S.; Koposov, G. D.; Perfil’ev, R. O.; Tyagunin, A. V. Analysis of Experimental Results by the Havriliak-Negami Model in Dielectric Spectroscopy. Opt. Spectrosc. 2018, 124, 202–205. DOI: 10.1134/S0030400X18020200.
  • Volkov, A. S.; Koposov, G. D.; Khviyuzov, S. S. Features of the Temperature-Frequency Dependences of the Electrophysical Properties of Vanillin Alcohol as a Model Lignin Compound. Chem. Phys. 2021, 548, 111202. DOI: 10.1016/j.chemphys.2021.111202.
  • Bogolitsyn, K. G.; Khviyuzov, S. S.; Volkov, A. S.; Koposov, G. D.; Gusakova, M. A. Broadband Dielectric Spectroscopy of Lignin. Russ. J. Phys. Chem. 2019, 93, 353–358. DOI: 10.1134/S0036024419020055.
  • Chupka, E. I.; Rykova, T. M. Electrical Properties of Lignin. Chem. Nat. Compd. 1983, 19, 78–80. DOI: 10.1007/BF00579968.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.