298
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Improvement of physical and mechanical properties of poplar wood via immobilization of rosin by grafting of vinyl chains

, , , ORCID Icon, ORCID Icon &

References

  • Qin, Y.; Dong, Y.; Li, J. Effect of Modification with Melamine–Urea–Formaldehyde Resin on the Properties of Eucalyptus and Poplar. J. Wood Chem. Technol 2019, 39, 360–371. DOI: 10.1080/02773813.2019.1636821.
  • Dong, Y.; Altgen, M.; Mäkelä, M.; Rautkari, L.; Hughes, M.; Li, J.; Zhang, S. Improvement of Interfacial Interaction in Impregnated Wood via Grafting Methyl Methacrylate onto Wood Cell Walls. Holzforschung 2020, 74, 967–977. DOI: 10.1515/hf-2019-0144.
  • Dong, Y.; Wang, K.; Li, J.; Zhang, S.; Shi, S. Q. Environmentally Benign Wood Modifications: A Review. ACS Sustainable Chem. Eng. 2020, 8, 3532–3540. DOI: 10.1021/acssuschemeng.0c00342.
  • Yao, M.; Yang, Y.; Song, J.; Yu, Y.; Jin, Y. Lignin-Based Catalysts for Chinese Fir Furfurylation to Improve Dimensional Stability and Mechanical Properties. Ind. Crops Prod 2017, 107, 38–44. DOI: 10.1016/j.indcrop.2017.05.038.
  • Li, W.; Liu, M.; Wang, H.; Yu, Y. Fabrication of Highly Stable and Durable Furfurylated Wood Materials. Part II: The Multi-Scale Distribution of Furfuryl Alcohol (FA) Resin in Wood. Holzforschung 2020, 74, 1147–1155. DOI: 10.1515/hf-2019-0287.
  • Esteves, B.; Nunes, L.; Pereira, H. Properties of Furfurylated Wood (Pinus Pinaster). Eur. J. Wood Prod. 2011, 69, 521–525. DOI: 10.1007/s00107-010-0480-4.
  • Singh, T.; Singh, A. P. A Review on Natural Products as Wood Protectant. Wood Sci. Technol. 2012, 46, 851–870. DOI: 10.1007/s00226-011-0448-5.
  • Grosse, C.; Grigsby, W. J.; Noël, M.; Treu, A.; Thévenon, M. F.; Gérardin, P. Optimizing Chemical Wood Modification with Oligomeric Lactic Acid by Screening of Processing Conditions. J. Wood Chem. Technol. 2019, 39, 385–398. DOI: 10.1080/02773813.2019.1601739.
  • He, Z.; Qian, J.; Qu, L.; Yan, N.; Yi, S. Effects of Tung Oil Treatment on Wood Hygroscopicity, Dimensional Stability and Thermostability. Ind. Crops Prod 2019, 140, 111647. DOI: 10.1016/j.indcrop.2019.111647.
  • Jebrane, M.; Pockrandt, M.; Terziev, N. Natural Durability of Selected Larch and Scots Pine Heartwoods in Laboratory and Field Tests. Int. Biodeterior. Biodegrad 2014, 91, 88–96. DOI: 10.1016/j.ibiod.2014.03.018.
  • Saha Tchinda, J.-B.; Ndikontar, M. K.; Fouda Belinga, A. D.; Mounguengui, S.; Njankouo, J. M.; Durmaçay, S.; Gerardin, P. Inhibition of Fungi with Wood Extractives and Natural Durability of Five Cameroonian Wood Species. Ind. Crops Prod 2018, 123, 183–191. DOI: 10.1016/j.indcrop.2018.06.078.
  • Ermeydan, M. A.; Cabane, E.; Masic, A.; Koetz, J.; Burgert, I. Flavonoid Insertion into Cell Walls Improves Wood Properties. ACS Appl. Mater. Interfaces 2012, 4, 5782–5789. DOI: 10.1021/am301266k.
  • Dong, Y.; Yan, Y.; Wang, K.; Li, J.; Zhang, S.; Xia, C.; Shi, S. Q.; Cai, L. Improvement of Water Resistance, Dimensional Stability, and Mechanical Properties of Poplar Wood by Rosin Impregnation. Eur. J. Wood Prod. 2016, 74, 177–184. DOI: 10.1007/s00107-015-0998-6.
  • Rao, X.; Wu, C.; Luo, Q.; Liu, Y.; Song, B. Synthesis and Properties of a Rosin-Based Gemini Surfactant Containing a Long Spacer. J. Forestry Eng 2019, 4, 83–90. DOI: 10.13360/j.issn.2096-1359.2019.06.012.
  • Lei, Y.-F.; Wang, X.-L.; Liu, B.-W.; Ding, X.-M.; Chen, L.; Wang, Y.-Z. Fully Bio-Based Pressure-Sensitive Adhesives with High Adhesivity Derived from Epoxidized Soybean Oil and Rosin Acid. ACS Sustainable Chem. Eng. 2020, 8, 13261–13270. DOI: 10.1021/acssuschemeng.0c03451.
  • Karlberg, A. T.; Hagvall, L. Colophony: Rosin in Unmodified and Modified Form. In Kanerva’s Occupational Dermatology, John, S. M., Johansen, J. D., Rustemeyer, T., Elsner, P., Maibach, H. I., Eds.; Springer International Publishing: Cham, 2020; pp 607–624. DOI: 10.1007/978-3-319-68617-2_41.
  • Rahman, M. A.; Lokupitiya, H. N.; Ganewatta, M. S.; Yuan, L.; Stefik, M.; Tang, C. Designing Block Copolymer Architectures toward Tough Bioplastics from Natural Rosin. Macromolecules 2017, 50, 2069–−2077. DOI: 10.1021/acs.macromol.7b00001.
  • Sacripante, G. G.; Zhou, K.; Farooque, M. Sustainable Polyester Resins Derived from Rosins. Macromolecules 2015, 48, 6876–6881. DOI: 10.1021/acs.macromol.5b01462.
  • Zhang, H.; Li, W.; Xu, J.; Shang, S.; Song, Z. Synthesis and Characterization of Bio-Based Epoxy Thermosets Using Rosin-Based Epoxy Monomer. Iran Polym. J. 2021, 30, 643–654. DOI: 10.1007/s13726-021-00918-9.
  • Dong, Y.; Zhang, W.; Hughes, M.; Wu, M.; Zhang, S.; Li, J. Various Polymeric Monomers Derived from Renewable Rosin for the Modification of Fast-Growing Poplar Wood. Compos. Part B 2019, 174, 106902. DOI: 10.1016/j.compositesb.2019.106902.
  • Yan, X.; Zhai, Z.; Song, Z.; Shang, S.; Rao, X. Synthesis and Properties of Polyester-Based Polymeric Surfactants from Diterpenic Rosin. Ind. Crops Prod. 2017, 108, 371–378. DOI: 10.1016/j.indcrop.2017.06.060.
  • Ma, Q.; Liu, X.; Zhang, R.; Zhu, J.; Jiang, Y. Synthesis and Properties of Full Bio-Based Thermosetting Resins from Rosin Acid and Soybean Oil: The Role of Rosin Acid Derivatives. Green Chem. 2013, 15, 1300. DOI: 10.1039/c3gc00095h.
  • Jebrane, M.; Fernández-Cano, V.; Panov, D.; Terziev, N.; Daniel, G. Novel Hydrophobization of Wood by Epoxidized Linseed Oil. Part 1. Process Description and anti-Swelling Efficiency of the Treated Wood. Holzforschung 2015, 69, 173–177. DOI: 10.1515/hf-2014-0029.
  • Esteves, B.; Nunes, L.; Domingos, I.; Pereira, H. Improvement of Termite Resistance, Dimensional Stability and Mechanical Properties of Pine Wood by Paraffin Impregnation. Eur. J. Wood Prod. 2014, 72, 609–615. DOI: 10.1007/s00107-014-0823-7.
  • Ding, W. D.; Koubaa, A.; Chaala, A. Mechanical Properties of MMA-Hardened Hybrid Poplar Wood. Ind. Crops Prod. 2013, 46, 304–310. DOI: 10.1016/j.indcrop.2013.02.004.
  • Emmerich, L.; Bollmus, S.; Militz, H. Wood Modification with DMDHEU (1.3-Dimethylol-4.5-Dihydroxyethyleneurea) – State of the Art, Recent Research Activities and Future Perspectives. Wood Mater. Sci. Eng. 2019, 14, 3–18. DOI: 10.1080/17480272.2017.1417907.
  • TranVan, L.; Legrand, V.; Jacquemin, F. Thermal Decomposition Kinetics of Balsa Wood: Kinetics and Degradation Mechanisms Comparison between Dry and Moisturized Materials. Polym. Degradation Stab 2014, 110, 208–215. DOI: 10.1016/j.polymdegradstab.2014.09.004.
  • Yang, H.; Yan, R.; Chen, H.; Zheng, C.; Lee, D. H.; Liang, D. T. In-Depth Investigation of Biomass Pyrolysis Based on Three Major Components: Hemicellulose, Cellulose and Lignin. Energy Fuels 2006, 20, 388–393. DOI: 10.1021/ef0580117.
  • Dong, Y.; Wang, K.; Yan, Y.; Zhang, S.; Li, J. Grafting Polyethylene Glycol Dicrylate (PEGDA) to Cell Walls of Poplar Wood in Two Steps for Improving Dimensional Stability and Durability of the Wood Polymer Composite. Holzforschung 2016, 70, 919–926. DOI: 10.1515/hf-2015-0239.
  • Mattos, B. D.; de Cademartori, P. H. G.; Magalhães, W. L. E.; Lazzarotto, M.; Gatto, D. A. Thermal Tools in the Evaluation of Decayed and Weathered Wood Polymer Composites Prepared by in Situ Polymerization. J. Therm. Anal. Calorim. 2015, 121, 1263–1271. DOI: 10.1007/s10973-015-4647-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.