353
Views
4
CrossRef citations to date
0
Altmetric
Review

Assessment of eucalypts wood lignin content by analytical pyrolysis, comparison with Klason and total lignin contents

ORCID Icon, , , & ORCID Icon

References

  • Myburg, A. A.; Potts, B. M.; Marques, C. M.; Kirst, M.; Gion, J.-M.; Grattapaglia, D.; Grima-Pettenatti, J. Eucalypts. In Forest Trees; Kole, C., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2007; pp 115–160
  • Eldridge, K.; Davidson, J.; Harwood, C.; Wyk, Gv. Eucalypt Domestication and Breeding; Clarendon Press: Oxford, 1994.
  • Grattapaglia, D. Genomics of Eucalyptus, a Global Tree for Energy, Paper, and Wood. In Genomics of Tropical Crop Plants; Moore, P.H., Ming, R., Eds.; Springer New York: New York, NY, 2008; pp 259–298
  • Hillis, W. Wood Quality and Utilization. In Eucalypts for Wood Production, 2nd ed.; Hillis, W.E., Brown, A.G., Eds.; CSIRO/Academic, Melbourne (, 1984.
  • Rana, V.; Joshi, G.; Singh, S., & Gupta, P. Eucalypts in Pulp and Paper Industry. 2014; pp 470–505.
  • Effland, M. J. Modified Procedure to Determine Acid-Insoluble Lignin in Wood and Pulp. Tappi J. 1977, 60, 143–144.
  • Saeman, J. F.; Moore, W. E.; Mitchell, R. L.; Millett, M. A. Techniques for the Determination of Pulp Constituents by Quantitative Paper Chromatography. Tappi J. 1954, 37, 336–343.
  • Whiting, P.; Favis, B. D.; St-Germain, F. G. T.; Goring, D. A. I. Fractional Separation of Middle Lamella and Secondary Wall Tissue from Spruce Wood. J. Wood Chem. Technol. 1981, 1, 29–42. DOI: 10.1080/02773818108085092.
  • Schwanninger, M.; Hinterstoisser, B. Klason Lignin: Modifications to Improve the Precision of the Standardized Determination. Holzforschung 2002, 56, 161–166. DOI: 10.1515/HF.2002.027.
  • Bland, D. E.; Menshun, M. Determination of Total Lignin and Polyphenol in Eucalypt Woods. Appita J 1971, 25, 110–115.
  • Merewether, J. W.; Samsuzzaman, L. A.; Calder, I. C. Studies on a Lignin-Carbohydrate Complex. Pt. II. Characterization of Water-Soluble Lignin-Carbohydrate Complex. Holzforschung 1972, 26, 180–185. +. DOI: 10.1515/hfsg.1972.26.5.180.
  • Schöning, A. G.; J. G. Absorptiometric Determination of Acid-Soluble Lignin in Semichemical Bisulfite Pulps and in Some Woods and Plants. Sven. Papperstidn. 1965, 68, 607–613.
  • Bland, D. E.; Menshun, M. The Lignin of Eucalypt Ramets and Seedlings Grown at Different Temperatures. Holzforschung 1971, 25, 174–176. DOI: 10.1515/hfsg.1971.25.6.174.
  • Dutt, D.; Tyagi, C. H. Comparison of Various Eucalyptus Species for Their Morphological, Chemical, Pulp and Paper Making Characteristics. Indian J. Chem. Technol. 2011, 18, 145–151.
  • Patt, R.; Kordsachia, O.; Fehr, J. European Hardwoods versus Eucalyptus Globulus as a Raw Material for Pulping. Wood Sci. Technol. 2006, 40, 39–48. DOI: 10.1007/s00226-005-0042-9.
  • Stackpole, D. J.; Vaillancourt, R. E.; Alves, A.; Rodrigues, J.; Potts, B. M. Genetic Variation in the Chemical Components of Eucalyptus Globulus Wood. G3 (Bethesda) 2011, 1, 151–159.
  • Zanatto, B.; de Paula, R. C.; de Paula, N. F.; Freitas, M. L. M.; de Araujo, M. J. Genetic Divergence among Eucalyptus Tereticornis Smith Open Pollinated Progenies for Growth and Wood Quality Characters. Sci. For. 2020, 48, 1–13. DOI: 10.18671/scifor.v48n128.15.
  • Gonultas, O.; Candan, Z. Chemical Characterization and FTIR Spectroscopy of Thermally Compressed Eucalyptus Wood Panels. Maderas, Cienc. Tecnol 2018, 20, 431–442.
  • Poke, F. S.; Potts, B. M.; Vaillancourt, R. E.; Raymond, C. A. Genetic Parameters for Lignin, Extractives and Decay in Eucalyptus Globulus. Ann. For. Sci. 2006, 63, 813–821. DOI: 10.1051/forest:2006080.
  • Ramirez, M.; Rodriguez, J.; Balocchi, C.; Peredo, M.; Elissetche, J. P.; Mendonca, R.; Valenzuela, S. Chemical Composition and Wood Anatomy of Eucalyptus Globulus Clones: Variations and Relationships with Pulpability and Handsheet Properties. J. Wood Chem. Technol. 2009, 29, 43–58. DOI: 10.1080/02773810802607559.
  • Xiao, M. Z.; Chen, W. J.; Hong, S.; Pang, B.; Cao, X. F.; Wang, Y. Y.; Yuan, T. Q.; Sun, R. C. Structural Characterization of Lignin in Heartwood, Sapwood, and Bark of Eucalyptus. Int. J. Biol. Macromol. 2019, 138, 519–527.
  • Baldin, T.; Talgatti, M.; da Silveira, A. G.; Cardoso Marchiori, J. N.; dos Santos, G. A.; dos Santos, O. P.; dos, R.; Teixeira Valente, B. M. Quality of Eucalyptus Benthamii Wood for Pulp Production by near Infrared Spectroscopy (NIRS). Sci. For. 2020, 48, 1–13. DOI: 10.18671/scifor.v48n126.05.
  • Ferraz, A.; Baeza, J.; Rodriguez, J.; Freer, J. Estimating the Chemical Composition of Biodegraded Pine and Eucalyptus Wood by DRIFT Spectroscopy and Multivariate Analysis. Bioresour. Technol. 2000, 74, 201–212. DOI: 10.1016/S0960-8524(00)00024-9.
  • Miranda, I.; Pereira, H. Provenance Effect on Wood Chemical Composition and Pulp Yield for Eucalyptus Globulus Labill. Appita J. 2001, 54, 347–351.
  • Nawawi, D. S.; Syafii, W.; Tomoda, I.; Uchida, Y.; Akiyama, T.; Yokoyama, T.; Matsumoto, Y. Characteristics and Reactivity of Lignin in Acacia and Eucalyptus Woods. J. Wood Chem. Technol 2017, 37, 273–282. DOI: 10.1080/02773813.2017.1291684.
  • Pereira, H. Variability in the Chemical Composition of Plantation Eucalypts (Eucalyptus Globulus Labill). Wood Fiber Sci. 1988, 20, 82–90.
  • Rodrigues, J.; Faix, O.; Pereira, H. Improvement of the Acetylbromide Method for Lignin Determination within Large Scale Screening Programmes. Holz Roh Werkst 1999, 57, 341–345. DOI: 10.1007/s001070050355.
  • Johnson, D. B.; Moore, W. E.; Zank, L. C. The Spectrophotometric Determination of Lignin in Small Wood Samples. Tappi J. 1961, 44, 793–798.
  • Iiyama, K.; Wallis, A. F. A. An Improved Acetyl Bromide Procedure for Determining Lignin in Woods and Wood Pulp. Wood Sci. Technol. 1988, 22, 271–280. DOI: 10.1007/BF00386022.
  • van Zyl, J. D. Notes on the Spectrophotometric Determination of Lignin in Wood Samples. Wood Sci. Technol. 1978, 12, 251–259. DOI: 10.1007/BF00351927.
  • Dence, C. W. The Determination of Lignin. In Methods in Lignin Chemistry; Lin, S.Y., Dence, C.W., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1992; pp 33–61
  • Alves, A.; Gierlinger, N.; Schwanninger, M.; Rodrigues, J. Analytical Pyrolysis as a Direct Method to Determine the Lignin Content in Wood Part 3. Evaluation of Species-Specific and Tissue-Specific Differences in Softwood Lignin Composition Using Principal Component Analysis. J. Anal. Appl. Pyrolysis 2009, 85, 30–37. DOI: 10.1016/j.jaap.2008.09.006.
  • Alves, A.; Rodrigues, J.; Wimmer, R.; Schwanninger, M. Analytical Pyrolysis as a Direct Method to Determine the Lignin Content in Wood. Part 2: Evaluation of the Common Model and the Influence of Compression Wood. J. Anal. Appl. Pyrolysis 2008, 81, 167–172. DOI: 10.1016/j.jaap.2007.11.001.
  • Alves, A.; Santos, S.; Simoes, R.; Rodrigues, J. Characterization of Residual Lignin in Cellulose Isolated by the Diglyme Method from Three Pinus Species by IR Spectroscopy and Analytical Pyrolysis. Holzforschung 2018, 72, 91–96. DOI: 10.1515/hf-2017-0031.
  • Alves, A.; Schwanninger, M.; Pereira, H.; Rodrigues, J. Calibration of NIR to Assess Lignin Composition (H/G Ratio) in Maritime Pine Wood Using Analytical Pyrolysis as the Reference Method. Holzforschung 2006, 60, 29–31. DOI: 10.1515/HF.2006.006.
  • Alves, A.; Schwanninger, M.; Pereira, H.; Rodrigues, J. Analytical Pyrolysis as a Direct Method to Determine the Lignin Content in wood - Part 1: Comparison of Pyrolysis Lignin with Klason Lignin. J. Anal. Appl. Pyrolysis 2006, 76, 209–213. DOI: 10.1016/j.jaap.2005.11.004.
  • Alves, A.; Simoes, R.; Stackpole, D. J.; Vaillancourt, R. E.; Potts, B. M.; Schwanninger, M.; Rodrigues, J. Determination of the Syringyl/Guaiacyl Ratio of Eucalyptus Globulus Wood Lignin by near Infrared-Based Partial Least Squares Regression Models Using Analytical Pyrolysis as the Reference Method. J. Near Infrared Spectrosc. 2011, 19, 343–348. DOI: 10.1255/jnirs.946.
  • Choi, J. W.; Faix, O.; Meier, D. Characterization of Residual Lignins from Chemical Pulps of Spruce (Picea Abies L.) and Beech (Fagus sylvatica L.) by Analytical Pyrolysis-Gas Chromatography/Mass Spectrometry. Holzforschung 2001, 55, 185–192. DOI: 10.1515/HF.2001.031.
  • del Rio, J. C.; Gutierrez, A.; Hernando, M.; Landin, P.; Romero, J.; Martinez, A. T. Determining the Influence of Eucalypt Lignin Composition in Paper Pulp Yield Using Py-GC/MS. J. Anal. Appl. Pyrolysis 2005, 74, 110–115. DOI: 10.1016/j.jaap.2004.10.010.
  • Faix, O.; Böttcher, J. H.; Bremer, J. In Rapid Characterization of Lignocellulosics and Lignins Using Multivariate Calibration Techniques for Analytical Pyrolysis and FTIR Spectroscopy. Proceedings of the 7th Int. Symposium on Wood and Pulping Chemistry (ISWPC), II, Beijing, May 25-28, 1993; Beijing, May 25-28, 1993; pp 829–836.
  • Lourenco, A.; Gominho, J.; Marques, A. V.; Pereira, H. Comparison of Py-GC/FID and Wet Chemistry Analysis for Lignin Determination in Wood and Pulps from Eucalyptus Globulus. Bioresources 2013, 8, 2967–2980. DOI: 10.15376/biores.8.2.2967-2980.
  • Meier, D.; Fortmann, I.; Odermatt, J.; Faix, O. Discrimination of Genetically Modified Poplar Clones by Analytical Pyrolysis-Gas Chromatography and Principal Component Analysis. J. Anal. Appl. Pyrolysis 2005, 74, 129–137. DOI: 10.1016/j.jaap.2004.12.001.
  • Rodrigues, J.; Meier, D.; Faix, O.; Pereira, H. Determination of Tree to Tree Variation in Syringyl/Guaiacyl Ratio of Eucalyptus Globulus Wood Lignin by Analytical Pyrolysis. J. Anal. Appl. Pyrolysis 1999, 48, 121–128. DOI: 10.1016/S0165-2370(98)00134-X.
  • Yokoi, H.; Nakase, T.; Ishida, Y.; Ohtani, H.; Tsuge, S.; Sonoda, T.; Ona, T. Discriminative Analysis of Eucalyptus Camaldulensis Grown from Seeds of Various Origins Based on Lignin Components Measured by Pyrolysis-Gas Chromatography. J. Anal. Appl. Pyrolysis 2001, 57, 145–152. DOI: 10.1016/S0165-2370(00)00137-6.
  • Alves, A.; Simoes, R.; Lousada, J. L.; Lima-Brito, J.; Rodrigues, J. Predicting the Lignin H/G Ratio of Pinus Sylvestris L. wood Samples by PLS-R Models Based on near-Infrared Spectroscopy. Holzforschung 2020, 74, 655–662. DOI: 10.1515/hf-2019-0186.
  • Godoy, E. A.; Rodrigues, J.; Alves, A. M. M.; Lazo, D. A. Content and Quality Study of the Lignin by Analytical Pyrolysis in Pinus Caribaea. Maderas, Cienc. Tecnol. 2007, 9, 179–188.
  • Lepikson-Neto, J.; Alves, A.; Simoes, R.; Deckmann, A. C.; Camargo, E. L. O.; Salazar, M. M.; Rio, M. C. S.; do Nascimento, L. C.; Pereira, G. A. G.; Rodrigues, J. C. Flavonoid Supplementation Reduces the Extractive Content and Increases the Syringyl/Guaiacyl Ratio in Eucalyptus Grandis x Eucalyptus Urophylla Hybrid Trees. Bioresources 2013, 8, 1747–1757. DOI: 10.15376/biores.8.2.1747-1757.
  • Pot, D.; Rodrigues, J. C.; Rozenberg, P.; Chantre, G.; Tibbits, J.; Cahalan, C.; Pichavant, F.; Plomion, C. QTLs and Candidate Genes for Wood Properties in Maritime Pine (Pinus Pinaster Ait). Tree Genetics & Genomes. 2006, 2, 10–24.
  • Meier, D.; Faix, O. Pyrolysis-Gas Chromatography-Mass Spectrometry. In Methods in Lignin Chemistry; Lin, S.Y., Dence, C.W., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1992; pp 177–199
  • Fengel, D. Wegener, G., Wood, Chemistry, Ultrastructure, Reactions;Walter de Gruyter: Berlin, 1984.
  • Sarkanen, K. V.; Hergert, H. L. Classification and Distribution. In Lignins: Occurrence, Formation, Structure and Function; Sarkanen, K. V., Ludwig, C.H., Eds.; Wiley Interscience: New York, 1971; pp 43–94
  • Faix, O.; Bremer, J.; Meier, D.; Fortmann, I.; Scheijen, M. A.; Boon, J. J. Characterization of Tobacco Lignin by Analytical Pyrolysis and Fourier Transform-Infrared Spectroscopy. J. Anal. Appl. Pyrolysis 1992, 22, 239–259. DOI: 10.1016/0165-2370(92)85017-F.
  • Faix, O.; Meier, D. Pyrolytic and Hydrogenolytic Degradation Studies on Lignocellulosics, Pulps and Lignins. Holz Roh. Werkst 1989, 47, 67–72.
  • Bose, S. K.; Francis, R. C.; Govender, M.; Bush, T.; Spark, A. Lignin Content versus Syringyl to Guaiacyl Ratio Amongst Poplars. Bioresour. Technol. 2009, 100, 1628–1633.
  • Genuit, W.; Boon, J. J.; Faix, O. Characterization of Beech Milled Wood Lignin by Pyrolysis-Gas Chromatography-Photoionization Mass Spectrometry. Anal. Chem. 1987, 59, 508–513.
  • Faix, O.; Fortmann, I.; Bremer, J.; Meier, D. Thermal-Degradation Products of Wood - Gas-Chromatographic Separation and Mass-Spectrometric Characterization of Polysaccharide Derived Products. Holz als Roh-und Werkstoff 1991, 49, 213–219. DOI: 10.1007/BF02613278.
  • Faix, O.; Fortmann, I.; Bremer, J.; Meier, D. Thermal-Degradation Products of Wood - a Collection of Electron-Impact (Ei) Mass-Spectra of Polysaccharide Derived Products. Holz als Roh-und Werkstoff 1991, 49, 299–304. DOI: 10.1007/BF02663795.
  • Faix, O.; Meier, D.; Fortmann, I. Thermal-Degradation Products of Wood - Gas-Chromatographic Separation and Mass-Spectrometric Characterization of Monomeric Lignin Derived Products. Holz Roh. Werkst 1990, 48, 281–285. DOI: 10.1007/BF02626519.
  • Faix, O.; Meier, D.; Fortmann, I. Thermal-Degradation Products of Wood - a Collection of Electron-Impact (Ei) Mass-Spectra of Monomeric Lignin Derived Products. Holz Roh. Werkst 1990, 48, 351–354. DOI: 10.1007/BF02639897.
  • Ralph, J.; Hatfield, R. D. Pyrolysis-Gc-Ms Characterization of Forage Materials. J. Agric. Food Chem. 1991, 39, 1426–1437. DOI: 10.1021/jf00008a014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.