306
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

High purity lignin from untreated larch bark: an efficient green methodology for lignin valorization and low-value by-product mitigation

, , &

References

  • Schutyser, W.; Renders, T.; Van den Bosch, S.; Koelewijn, S.-F.; Beckham, G. T.; Sels, B. F. Chemicals from Lignin: An Interplay of Lignocellulose Fractionation, Depolymerisation, and Upgrading. Chem. Soc. Rev. 2018, 47, 852–908.
  • Cazacu, G.; Capraru, M.; Popa, V. I. Advances concerning Lignin Utilization in New Material. Springer: Berlin/Heidelberg, Germany, 2013; pp. 255–312.
  • Lora, J. H.; Glasser, W. G. Recent Industrial Applications of Lignin: A Sustainable Alternative to Nonrenewable Materials. J. Polym. Environ. 2002, 10, 39–48. [Database] DOI: 10.1023/A:1021070006895.
  • Carmo, J. F.; Miranda, I.; Quilhó, T.; Sousa, V. B.; Cardoso, S.; Carvalho, A. M.; Carmo, F.; Latorraca, J.; Pereira, H. Copaifera Langsdorffii Bark as a Source of Chemicals: Structural and Chemical Characterization. J. Wood Chem. Technol. 2016, 36, 305–317. DOI: 10.1080/02773813.2016.1140208.
  • Niu, N.; Ma, Z.; He, F.; Li, S.; Li, J.; Liu, S.; Yang, P. Preparation of Carbon Dots for Cellular Imaging by the Molecular Aggregation of Cellulolytic Enzyme Lignin. Langmuir. 2017, 33, 5786–5795. DOI: 10.1021/acs.langmuir.7b00617.
  • Chen, W.; Hu, C.; Yang, Y.; Cui, J.; Liu, Y. Rapid Synthesis of Carbon Dots by Hydrothermal Treatment of Lignin. Materials. 2016, 9, 184. DOI: 10.3390/ma9030184.
  • Xue, B.; Yang, Y.; Sun, Y.; Fan, J.; Li, X.; Zhang, Z. Photoluminescent Lignin Hybridized Carbon Quantum Dots Composites for Bioimaging Applications. Int. J. Biol. Macromol. 2019, 122, 954–961. DOI: 10.1016/j.ijbiomac.2018.11.018.
  • Ding, z.; Li, F.; Wen, J.; Wang, X.; Sun, R. Gram-Scale Synthesis of Single-Crystalline Graphene Quantum Dots Derived from Lignin Biomass. Green Chem. 2018, 20, 1383–1390. DOI: 10.1039/C7GC03218H.
  • Moreno, A.; Sipponen, M. H. Lignin-Based Smart Materials: A Roadmap to Processing and Synthesis for Current and Future Applications. Mater. Horiz. 2020, 7, 2237–2257. DOI: 10.1039/D0MH00798F.
  • Jung, H. Y.; Lee, J. S.; Han, H. T.; Jung, J.; Eom, K.; Lee, J. T. Lignin-Based Materials for Sustainable Rechargeable Batteries. Polymers. 2022, 14, 673–695. DOI: 10.3390/polym14040673.
  • Ragauskas, A. J.; Beckham, G. T.; Biddy, M. J.; Chandra, R.; Chen, F.; Davis, M. F.; Davison, B. H.; Dixon, R. A.; Gilna, P.; Keller, M.; et al. Lignin Valorization: improving Lignin Processing in the Biorefinery. Science. 2014, 344, 1246843. DOI: 10.1126/science.1246843.
  • Sathitsuksanoh, N.; Holtman, K. M.; Yelle, D. J.; Morgan, T.; Stavila, V.; Pelton, J.; Blanch, H.; Simmons, B. A.; George, A. Lignin Fate and Characterization during Ionic Liquid Biomass Pretreatment for Renewable Chemicals and Fuels Production. Green Chem. 2014, 16, 1236–1247. DOI: 10.1039/C3GC42295J.
  • Vishtal, A.; Kraslawski, A. Challenges in Industrial Applications of Technical Lignins. BioRes. 2011, 6, 3547–3568. DOI: 10.15376/biores.6.3.3547-3568.
  • Kuhlberg, M.; Särkkä, T.; Uusivuori, J. Technological Transformation in the Global Pulp and Paper Industry: Concluding Remarks, Berlin: Springer, 2018, 279–282
  • Da Costa Lopes, A. M. Biomass Delignification with Green Solvents towards Lignin Valorisation: Ionic Liquids vs Deep Eutectic Solvents. Acta Innov. 2021, 40, 64–78.
  • Gillet, S.; Aguedo, M.; Petitjean, L.; Morais, A.; da Costa Lopes, A. M.; Łukasik, R. M.; Anastas, P. T. Lignin Transformations for High Value Applications: Towards Targeted Modifications Using Green Chemistry. Green Chem. 2017, 19, 4200–4233. DOI: 10.1039/C7GC01479A.
  • Alonso, D. A.; Baeza, A.; Chinchilla, R.; Guillena, G.; Pastor, I. M.; Ramón, D. J. Deep Eutectic Solvents: The Organic Reaction Medium of the Century. Eur. J. Org. Chem. 2016, 2016, 612–632. DOI: 10.1002/ejoc.201501197.
  • Tang, X.; Zuo, M.; Li, Z.; Liu, H.; Xiong, C.; Zeng, X.; Sun, Y.; Hu, L.; Liu, S.; Lei, T.; Lin, L. Green Processing of Lignocellulosic Biomass and Its Derivatives in Deep Eutectic Solvents. ChemSusChem. 2017, 10, 2696–2706. DOI: 10.1002/cssc.201700457.
  • Chen, Z.; Wan, C. Ultrafast Fractionation of Lignocellulosic Biomass by Microwave-Assisted Deep Eutectic Solvent Pretreatment. Bioresour. Technol. 2018, 250, 532–537.
  • Kim, K. H.; Dutta, T.; Sun, J.; Simmons, B.; Singh, S. Biomass Pretreatment Using Deep Eutectic Solvents from Lignin Derived Phenols. Green Chem. 2018, 20, 809–815. DOI: 10.1039/C7GC03029K.
  • Shen, X.-J.; Wen, J.-L.; Mei, Q.-Q.; Chen, X.; Sun, D.; Yuan, T.-Q.; Sun, R.-C. Facile Fractionation of Lignocelluloses by Biomass-Derived Deep Eutectic Solvent (DES) Pretreatment for Cellulose Enzymatic Hydrolysis and Lignin Valorization. Green Chem. 2019, 21, 275–283. DOI: 10.1039/C8GC03064B.
  • Oh, Y.; Park, S.; Yoo, E.; Jo, S.; Hong, J.; Kim, H. J.; Kim, K. J.; Oh, K. K.; Lee, S. H. Dihydrogenbonding Deep Eutectic Solvents as Reaction Media for Lipase-Catalyzed Transesterification. Biochem. Eng. J. 2019, 142, 34–40. DOI: 10.1016/j.bej.2018.11.010.
  • Khandelwal, S.; Tailor, Y. K.; Kumar, M. Deep Eutectic Solvents (DESs) as Eco-Friendly and Sustainable Solvent/Catalyst Systems in Organic Transformations. J. Mol. Liq. 2016, 215, 345–386. DOI: 10.1016/j.molliq.2015.12.015.
  • Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147.
  • Mbous, Y. P.; Hayyan, M.; Hayyan, A.; Wong, W. F.; Hashim, M. A.; Looi, C. Y. Applications of Deep Eutectic Solvents in Biotechnology and Bioengineering-Promises and Challenges. Biotechnol. Adv. 2017, 35, 105–134.
  • Zhang, C.-W.; Xia, S.-Q.; Ma, P.-S. Facile Pretreatment of Lignocellulosic Biomass Using Deep Eutectic Solvents. Bioresour. Technol. 2016, 219, 1–5.
  • Liu, Y.; Zheng, J.; Xiao, J.; He, X.; Zhang, K.; Yuan, S.; Peng, Z.; Chen, Z.; Lin, X. Enhanced Enzymatic Hydrolysis and Lignin Extraction of Wheat Straw by Triethylbenzyl Ammonium Chloride/Lactic Acid-Based Deep Eutectic Solvent Pretreatment. ACS Omega. 2019, 4, 19829–19839. DOI: 10.1021/acsomega.9b02709.
  • Procentese, A.; Johnson, E.; Orr, V.; Garruto Campanile, A.; Wood, J. A.; Marzocchella, A.; Rehmann, L. Deep Eutectic Solvent Pretreatment and Subsequent Saccharification of Corncob. Bioresour. Technol. 2015, 192, 31–36.
  • Guo, Z.; Zhang, Q.; You, T.; Zhang, X.; Xu, F.; Wu, Y. Short-Time Deep Eutectic Solvent Pretreatment for Enhanced Enzymatic Saccharification and Lignin Valorization. Green Chem. 2019, 21, 3099–3108. DOI: 10.1039/C9GC00704K.
  • Abranches, D. O.; Martins, M.; Silva, L. P.; Schaeffer, N.; Pinho, S. P.; Coutinho, J. Phenolic Hydrogen Bond Donors in the Formation of Non-Ionic Deep Eutectic Solvents: The Quest for Type V DES. Chem. Commun. (Camb). 2019, 55, 10253–10256.
  • Praciak, A. The CABI Encyclopedia Oforest Trees (CABI, Oxfordshire, UK, 2013.
  • Gierlinger, N.; Jacques, D.; Grabner, M.; Wimmer, R.; Schwanninger, M.; Rozenberg, P.; Pques, L. E. Colour of Larch Heartwood and Relationships to Extractives and Brown-Rot Decay Resistance. Trees - Struct. Funct. 2004, 18, 102–108. DOI: 10.1007/s00468-003-0290-y.
  • Pásztory, Z.; Ronyecz Mohácsiné, I.; Gorbacheva, G.; Börcsök, Z. The Utilization of Tree Bark. BioRes. 2016, 11, 7859–7888. DOI: 10.15376/biores.11.3.Pasztory.
  • Wenig, C.; Dunlop, J.; Hehemeyer-Cürten, J.; Reppe, F. J.; Horbelt, N.; Krauthausen, K.; Fratzl, P.; Eder, M. Advanced Materials Design Based on Waste Wood and Bark. Philos. Trans. A Math. Phys. Eng. Sci. 2021, 379, 20200345.
  • International Organization for Standardization. Wood-Determination of Moisture Content for Physical and Mechanical Testing. OENORM ISO, 1994, 3130, 1–2.
  • Vangeel, T.; Neiva, D. M.; Quilho, T.; Costa, R. A.; Sousa, V.; Sels, B. F.; Pereira, H. Tree Bark Characterization Envisioning an Integrated Use in a Biorefinery. Biomass Conv. Bioref. 2021. DOI: 10.1007/s13399-021-01362-8.
  • García, A.; González, A. M.; Spigno, G.; Labidi, J. Lignin as Natural Radical Scavenger. Effect of the Obtaining and Purification Processes on the Antioxidant Behaviour of Lignin. Biochem. Eng. J. 2012, 67, 173–185. DOI: 10.1016/j.bej.2012.06.013.
  • Alzagameem, A.; Khaldi-Hansen, B.; Büchner, D.; Larkins, M.; Kamm, B.; Witzleben, S.; Schulze, M. Lignocellulosic Biomass as Source for Lignin-Based Environmentally Benign Antioxidants. Molecules. 2018, 23, 2664–2684. DOI: 10.3390/molecules23102664.
  • Alvarez-Vasco, C.; Ma, R.; Quintero, M.; Guo, M.; Geleynse, S.; Ramasamy, K. K.; Wolcott, M.; Zhang, X. Unique Low-Molecular-Weight Lignin with High Purity Extracted from Wood by Deep Eutectic Solvents (DES): a Source of Lignin for Valorization. Green Chem. 2016, 18, 5133–5141. DOI: 10.1039/C6GC01007E.
  • Zhao, X.; Li, S.; Wu, R.; Liu, D. Organosolv Fractionating Pre‐Treatment of Lignocellulosic Biomass for Efficient Enzymatic Saccharification: Chemistry, Kinetics, and Substrate Structures. Biofuels, Bioprod. Bioref. 2017, 11, 567–590. DOI: 10.1002/bbb.1768.
  • Oh, Y.; Park, S.; Jung, D.; Oh, K. K.; Le, S. H. Effect of Hydrogen Bond Donor on the Choline Chloride-Based Deep Eutectic Solvent-Mediated Extraction of Lignin from Pine Wood. Int J Biol Macromol. 2020, 165, 187–197. DOI: 10.1016/j.ijbiomac.2020.09.145.
  • Chen, Z.; Ragauskas, A.; Wan, C. Lignin Extraction and Upgrading Using Deep Eutectic Solvents. Ind. Crops Prod. 2020, 147, 112241–112272. DOI: 10.1016/j.indcrop.2020.112241.
  • Grzybek, J.; Sepperer, T.; Petutschnigg, A.; Schnabel, T. Organosolv Lignin from European Tree Bark: Influence of Bark Pretreatment. Materials. 2021, 14, 7774–7785. DOI: 10.3390/ma14247774.
  • da Costa Lopes, A. M.; Brenner, M.; Falé, P.; Roseiro, L. B.; Bogel-Łukasik, R. a. fał. Extraction and Purification of Phenolic Compounds from Lignocellulosic Biomass Assisted by Ionic Liquid, Polymeric Resins and Supercritical CO. ACS Sustain. Chem. Eng. 2016, 4, 3357–3367. DOI: 10.1021/acssuschemeng.6b00429.
  • Morais, A. R. C.; Pinto, J. V.; Nunes, D.; Roseiro, L. B.; Oliveira, MariaCo. n. ceição.; Fortunato, E.; Bogel-Łukasik, R. Imidazole: Prospect Solvent for Lignocellulosic Biomass Fractionation and Delignification. ACS Sustain. Chem. Eng. 2016, 4, 1643–1652. DOI: 10.1021/acssuschemeng.5b01600.
  • da Costa Lopes, A. M.; João, K. G.; Rubik, D. F.; Bogel-Łukasik, E.; Duarte, L. C.; Andreaus, J.; Bogel-Łukasik, R. Pre-Treatment of Lignocellulosic Biomass Using Ionic Liuids: wheat Straw Fractionation. Bioresource Technol. 2013, 142, 198–208. DOI: 10.1016/j.biortech.2013.05.032.
  • Brandt, A.; Ray, M. J.; To, T. Q.; Leak, D. J.; Murphy, R. J.; Welton, T. Ionic Liquid Pretreatment of Lignocellulosic Biomass with Ionic Liquid–Water Mixtures. Green Chem. 2011, 13, 2489–2499. DOI: 10.1039/c1gc15374a.
  • Kang, Y.; Realff, M. J.; Sohn, M.; Lee, J. H.; Bommarius, A. S. An Effective Chemical Pretreatment Method for Lignocellulosic Biomass with Substituted Imidazoles. Biotechnol. Prog. 2015, 31, 25–34. DOI: 10.1002/btpr.2005.
  • Faix, O. Classification of Lignin from Different Botanical Origins by FT-IR Spectroscopy. Holzforschung 1991, 45, 21–27. DOI: 10.1515/hfsg.1991.45.s1.21.
  • Sun, R.; Tomkinson, J.; Mao, F. C.; Sun, X. F. Physicochemical Characterization of Lignins from Rice Straw by Hydrogen Peroxide Treatment. J. Appl. Polym. Sci. 2001, 79, 719–732. DOI: 10.1002/1097-4628(20010124)79:4<719::AID-APP170>3.0.CO;2-3.
  • Gosselink, R. J. A.; Abächerli, A.; Semke, H.; Malherbe, R.; Käuper, P.; Nadif, A.; van Dam, J. E. G. Analytical Protocols for Characterisation of Sulphur-Free Lignin. Ind. Crops Prod 2004, 19, 271–281. DOI: 10.1016/j.indcrop.2003.10.008.
  • Pan, X. J.; Kadla, J. F.; Ehara, K.; Gilkes, N.; Saddler, J. N. Organosolv Ethanol Lignin from Hybrid Poplar as a Radical Scavenger: Relationship between Lignin Structure, Extraction Conditions, and Antioxidant Activity. J. Agric. Food Chem. 2006, 54, 5806–−5813.
  • Sun, S.-N.; Cao, X.-F.; Xu, F.; Sun, R.-C.; Jones, G. L. Structural Features and Antioxidant Activities of Lignins from Steam-Exploded Bamboo (Phyllostachys Pubescens). J Agric Food Chem. 2014, 62, 5939–5947. DOI: 10.1021/jf5023093.
  • Lu, Q.; Liu, W.; Yang, L.; Zu, Y.; Zu, B.; Zhu, M.; Zhang, Y.; Zhang, X.; Zhang, R.; Sun, Z.; et al. Investigation of the Effects of Different Organosolv Pulping Methods on Antioxidant Capacity and Extraction Efficiency of Lignin. Food Chem. 2012, 131, 313–−317. DOI: 10.1016/j.foodchem.2011.07.116.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.