212
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Understanding the effects of ionic liquids and antisolvent addition on the extraction and recovery of Pinus radiata bark components

, , , &

References

  • Bauen, A.; Berndes, G.; Junginger, M.; Londo, M.; Vuille, F.; Ball, R.; Bole, T.; Chudziak, C.; Faaij, A.; Mozaffarian, H. Bioenergy – A Sustainable and Reliable Energy Source. A Review of Status and Prospects. IEA Bioenergy 2009.
  • Mead, D. J. Sustainable Management of Pinus Radiata Plantations. In Sustainable Management of Pinus Radiata Plantations; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; FAO Forestry Paper No. 170.
  • Pásztory, Z.; Mohácsiné, I. R.; Gorbacheva, G.; Börcsök, Z. The Utilization of Tree Bark. BioRes. 2016, 11, 7859–7888. DOI: 10.15376/biores.11.3.Pasztory.
  • Fengel, D.; Wegener, G. Constituents of Bark. In Wood: Chemistry, Ultrastructure, Reactions; Fengel, D.; Wegener, G., Eds; New York, USA: De Gruyter, 2011; pp 240–267
  • Graça, J. Suberin: The Biopolyester at the Frontier of Plants. Front Chem. 2015, 3, 62.
  • Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chem Soc Rev. 2011, 40, 3941–3994.
  • Upton, B. M.; Kasko, A. M. Strategies for the Conversion of Lignin to High-Value Polymeric Materials: Review and Perspective. Chem Rev. 2016, 116, 2275–2306.
  • Md Salim, R.; Asik, J.; Sarjadi, M. S. Chemical Functional Groups of Extractives, Cellulose and Lignin Extracted from Native Leucaena Leucocephala Bark. Wood Sci Technol. 2021, 55, 295–313. DOI: 10.1007/s00226-020-01258-2.
  • Passos, H.; Freire, M. G.; Coutinho, J. A. P. Ionic Liquid Solutions as Extractive Solvents for Value-Added Compounds from Biomass. Green Chem. 2014, 16, 4786–4815.
  • Rogers, R. D.; Seddon, K. R. Chemistry. Ionic Liquids-Solvents of the Future?. Science. 2003, 302, 792–793. DOI: 10.1126/science.1090313.
  • Madeira, P. P.; Passos, H.; Gomes, J.; Coutinho, J. A. P.; Freire, M. G. Alternative Probe for the Determination of the Hydrogen-Bond Acidity of Ionic Liquids and Their Aqueous Solutions. Phys. Chem. Chem. Phys. 2017, 19, 11011–11016. DOI: 10.1039/C6CP08210F.
  • Brennecke, J. F.; Maginn, E. J. Ionic Liquids: Innovative Fluids for Chemical Processing. AIChE J. 2001, 47, 2384–2389. DOI: 10.1002/aic.690471102.
  • Pandey, A.; Rai, R.; Pal, M.; Pandey, S. How Polar Are Choline Chloride-Based Deep Eutectic Solvents? Phys Chem Chem Phys. 2014, 16, 1559–1568.
  • Rani, A.; Brant, M. A.; Crowhurst, A.; Dolan, L.; Lui, A.; Hassan, M.; Hallett, N. H.; Hunt, J. P.; Niedermeyer, P. A.; Perez-Arlandis, H.; et al. Understanding the Polarity of Ionic Liquids. Phys. Chem. Chem. Phys. 2011, 13, 16831–16840. DOI: 10.1039/c1cp21262a.
  • Crowhurst, L.; Mawdsley, P. R.; Perez-Arlandis, J. M.; Salter, P. A.; Welton, T. Solvent–Solute Interactions in Ionic Liquids. Phys. Chem. Chem. Phys. 2003, 5, 2790–2794. DOI: 10.1039/B303095D.
  • Kurth, E. F. The Chemical Composition of Barks. Chem Rev. 1947, 40, 33–49.
  • George, A.; Brandt, A.; Tran, K.; Zahari, S. M. S. N. S.; Klein-Marcuschamer, D.; Sun, N.; Sathitsuksanoh, N.; Shi, J.; Stavila, V.; Parthasarathi, R.; et al. Design of Low-Cost Ionic Liquids for Lignocellulosic Biomass Pretreatment. Green Chem. 2015, 17, 1728–1734. DOI: 10.1039/C4GC01208A.
  • Vo, H. T.; Kim, C. S.; Ahn, B. S.; Kim, H. S.; Lee, H. Study on Dissolution and Regeneration of Poplar Wood in Imidazolium-Based Ionic Liquids. J. Wood Chem. Technol. 2011, 31, 89–102. DOI: 10.1080/02773813.2010.486463.
  • Haykir, N. I.; Soysal, K.; Yaglikci, S.; Gokce, Y. Assessing the Effect of Protic Ionic Liquid Pretreatment of Pinus Radiata from Different Perspectives Including Solvent-Water Ratio. J. Wood Chem. Technol. 2021, 41, 236–248. DOI: 10.1080/02773813.2021.1976797.
  • Brandt, A.; Hallett, J. P.; Leak, D. J.; Murphy, R. J.; Welton, T. The Effect of the Ionic Liquid Anion in the Pretreatment of Pine Wood Chips. Green Chem. 2010, 12, 672–679. DOI: 10.1039/b918787a.
  • Kunov-Kruse, A. J.; Weber, C. C.; Rogers, R. D.; Myerson, A. S. The a Priori Design and Selection of Ionic Liquids as Solvents for Active Pharmaceutical Ingredients. Chemistry. 2017, 23, 5498–5508.
  • Qiu, F.; He, T.-Z.; Zhang, Y.-Q. The Isolation and the Characterization of Two Polysaccharides from the Branch Bark of Mulberry (Morus Alba L.). Arch. Pharm. Res. 2016, 39, 887–896. DOI: 10.1007/s12272-016-0742-8.
  • Swatloski, R. P.; Spear, S. K.; Holbrey, J. D.; Rogers, R. D. Dissolution of Cellose with Ionic Liquids. J Am Chem Soc. 2002, 124, 4974–4975.
  • Clough, M. T.; Geyer, K.; Hunt, P. A.; Son, S.; Vagt, U.; Welton, T. Ionic Liquids: Not Always Innocent Solvents for Cellulose. Green Chem. 2015, 17, 231–243. DOI: 10.1039/C4GC01955E.
  • Hart, W. E. S.; Harper, J. B.; Aldous, L. The Effect of Changing the Components of an Ionic Liquid upon the Solubility of Lignin. Green Chem. 2015, 17, 214–218. DOI: 10.1039/C4GC01888E.
  • Gandini, A.; Pascoal Neto, C.; Silvestre, A. J. D. Suberin: A Promising Renewable Resource for Novel Macromolecular Materials. Prog. Polym. Sci. 2006, 31, 878–892. DOI: 10.1016/j.progpolymsci.2006.07.004.
  • Ferreira, R.; Garcia, H.; Sousa, A. F.; Petkovic, M.; Lamosa, P.; Freire, C. S. R.; Silvestre, A. J. D.; Rebelo, L. P. N.; Pereira, C. S. Suberin Isolation from Cork Using Ionic Liquids: Characterisation of Ensuing Products. New J. Chem. 2012, 36, 2014–2024. DOI: 10.1039/c2nj40433h.
  • Zhu, S.; Wu, Y.; Chen, Q.; Yu, Z.; Wang, C.; Jin, S.; Ding, Y.; Wu, G. Dissolution of Cellulose with Ionic Liquids and Its Application: A Mini-Review. Green Chem. 2006, 8, 325–327. DOI: 10.1039/b601395c.
  • Weber, C. C.; Kunov-Kruse, A. J.; Rogers, R. D.; Myerson, A. S. Manipulation of Ionic Liquid Anion-Solute-Antisolvent Interactions for the Purification of Acetaminophen. Chem. Commun. (Camb). 2015, 51, 4294–4297.
  • An, J.-H.; Kim, W.-S. Antisolvent Crystallization Using Ionic Liquids as Solvent and Antisolvent for Polymorphic Design of Active Pharmaceutical Ingredients. Cryst. Growth Des. 2013, 13, 31–39. DOI: 10.1021/cg300730w.
  • Minnick, D. L.; Flores, R. A.; DeStefano, M. R.; Scurto, A. M. Cellulose Solubility in Ionic Liquid Mixtures: Temperature, Cosolvent, and Antisolvent Effects. J. Phys. Chem. B. 2016, 120, 7906–7919. DOI: 10.1021/acs.jpcb.6b04309.
  • Bordes, É.; Costa, A. J. L.; Szala-Bilnik, J.; Andanson, J.-M.; Esperança, J. M. S. S.; Gomes, M. F. C.; Lopes, J. N. C.; Pádua, A. A. H. Polycyclic Aromatic Hydrocarbons as Model Solutes for Carbon Nanomaterials in Ionic Liquids. Phys. Chem. Chem. Phys 2017, 19, 27694–27703. DOI: 10.1039/C7CP04932C.
  • Aspé, E.; Fernández, K. The Effect of Different Extraction Techniques on Extraction Yield, Total Phenolic, and anti-Radical Capacity of Extracts from Pinus Radiata Bark. Ind. Crops Prod. 2011, 34, 838–844. DOI: 10.1016/j.indcrop.2011.02.002.
  • Ku, C. S.; Jang, J. P.; Mun, S. P. Exploitation of Polyphenol-Rich Pine Barks for Potent Antioxidant Activity. J Wood Sci. 2007, 53, 524–528. DOI: 10.1007/s10086-007-0896-6.
  • Cordeiro, N.; Belgacem, M. N.; Silvestre, A. J. D.; Pascoal Neto, C.; Gandini, A. Cork Suberin as a New Source of Chemicals.: 1. Isolation and Chemical Characterization of Its Composition. Int J Biol Macromol. 1998, 22, 71–80.
  • Lopes, M. H.; Gil, A. M.; Silvestre, A. J. D.; Neto, C. P. Composition of Suberin Extracted upon Gradual Alkaline Methanolysis of Quercus Suber L. Cork. J Agric Food Chem. 2000, 48, 383–391.
  • Perra, B.; Haluk, J. P.; Metche, M. IR, 1H and 13C NMR Spectroscopic Studies of Suberin from Beech Barks (Fagus sylvatica L). Holzforschung. 1995, 49, 99–103. DOI: 10.1515/hfsg.1995.49.2.99.
  • Raymond, L. G.; Hill, S. J.; Grigsby, W. J.; Bogun, B. R. A Chemometric Approach for the Segregation of Bark Biomass Based on Tree Height and Geographic Location. J. Wood Chem. Technol. 2020, 40, 361–369. DOI: 10.1080/02773813.2020.1825494.
  • Zicmanis, A.; Zeltkalne, S. Ionic Liquids with Dimethyl Phosphate Anion as Highly Efficient Materials for Technological Processes: A Review. Int J Petrochem Res. 2018, 2, 116–125. DOI: 10.18689/ijpr-1000121.
  • Berga, L.; Bruce, I.; Nicol, T. W. J.; Holding, A. J.; Isobe, N.; Shimizu, S.; Walker, A. J.; Reid, J. E. S. J. Cellulose Dissolution and Regeneration Using a Non-Aqueous, Non-Stoichiometric Protic Ionic Liquid System. Cellulose. 2020, 27, 9593–9603. DOI: 10.1007/s10570-020-03444-8.
  • Huo, F.; Liu, Z.; Wang, W. Cosolvent or Antisolvent? A Molecular View of the Interface between Ionic Liquids and Cellulose upon Addition of Another Molecular Solvent. J Phys Chem B. 2013, 117, 11780–11792. DOI: 10.1021/jp407480b.
  • Neto, C. P.; Rocha, J.; Gil, A.; Cordeiro, N.; Esculcas, A. P.; Rocha, S.; Delgadillo, I.; De Jesus, J. D. P.; Correia, A. J. F. 13C Solid-State Nuclear Magnetic Resonance and Fourier Transform Infrared Studies of the Thermal Decomposition of Cork. Solid State Nucl Magn Reson. 1995, 4, 143–151.
  • Heneczkowski, M.; Kopacz, M.; Nowak, D.; Kuźniar, A. Infrared Spectrum Analysis of Some Flavonoids. Acta Pol Pharm. 2001, 58, 415–420.
  • Yalcin, D.; Welsh, I. D.; Matthewman, E. L.; Jun, S. P.; McKeever-Willis, M.; Gritcan, I.; Greaves, T. L.; Weber, C. C. Structural Investigations of Molecular Solutes within Nanostructured Ionic Liquids. Phys Chem Chem Phys. 2020, 22, 11593–11608.
  • Mun, J. S.; Kim, H. C.; Mun, S. P. Chemical Characterization of Neutral Extracts Prepared by Treating Pinus Radiata Bark with Sodium Bicarbonate. J. Korean Wood Sci. Technol. 2020, 48, 878–887.
  • Klingberg, A.; Odermatt, J.; Meier, D. Influence of Parameters on pyrolysis-GC/MS of Lignin in the Presence of Tetramethylammonium Hydroxide. J. Anal. Appl. Pyrolysis. 2005, 74, 104–109. DOI: 10.1016/j.jaap.2004.11.023.
  • Challinor, J. M. A Pyrolysis-Derivatisation-Gas Chromatography Technique for the Structural Elucidation of Some Synthetic Polymers. J. Anal. Appl. Pyrolysis. 1989, 16, 323–333. DOI: 10.1016/0165-2370(89)80015-4.
  • Fabbri, D.; Helleur, R. Characterization of the Tetramethylammonium Hydroxide Thermochemolysis Products of Carbohydrates. J. Anal. Appl. Pyrolysis. 1999, 49, 277–293. DOI: 10.1016/S0165-2370(98)00085-0.
  • Paine, J. B.; Pithawalla, Y. B.; Naworal, J. D. Carbohydrate Pyrolysis Mechanisms from Isotopic Labeling: Part 4. The Pyrolysis of d-Glucose: The Formation of Furans. J. Anal. Appl. Pyrolysis. 2008, 83, 37–63. DOI: 10.1016/j.jaap.2008.05.008.
  • Lall-Ramnarine, S. I.; Thomas, M. F.; Jalees, M.; Payen, F.; Boursiquot, S.; Ramati, S.; Ewko, D.; Zmich, N. V.; Wishart, J. F. Probing the Physical Properties, Synthesis and Cellulose Dissolution Ability of Dialkyl Phosphate Ionic Liquids. Phosphorus Sulfur Silicon Relat. Elem. 2015, 190, 891–895. DOI: 10.1080/10426507.2014.985824.
  • Spange, S.; Lungwitz, R.; Schade, A. Correlation of Molecular Structure and Polarity of Ionic Liquids. J. Mol. Liq. 2014, 192, 137–143. DOI: 10.1016/j.molliq.2013.06.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.