228
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Acid-catalyzed Kraft lignin liquefaction for producing polyols and polyurethane foams

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • IBÁ. IBÁ Annual Report. Indústria Bras. árvores 2023, 1–93.
  • Mahmood, N.; Yuan, Z.; Schmidt, J.; Xu, C. Depolymerization of Lignins and Their Applications for the Preparation of Polyols and Rigid Polyurethane Foams: A Review. Renew. Sustain. Energy Rev. 2016, 60, 317–329. DOI: 10.1016/j.rser.2016.01.037.
  • Kienberger, M.; Maitz, S.; Pichler, T.; Demmelmayer, P. Systematic Review on Isolation Processes for Technical Lignin. Processes 2021, 9, 804. DOI: 10.3390/pr9050804.
  • Ajao, O.; Benali, M.; Faye, A.; Li, H.; Maillard, D.; Ton-That, M. T. Multi-Product Biorefinery System for Wood-Barks Valorization into Tannins Extracts, Lignin-Based Polyurethane Foam and Cellulose-Based Composites: Techno-Economic Evaluation. Ind. Crops Prod. 2021, 167, 113435. DOI: 10.1016/j.indcrop.2021.113435.
  • Silva, S. H. F.; Egüés, I.; Labidi, J. Liquefaction of Kraft Lignin Using Polyhydric Alcohols and Organic Acids as Catalysts for Sustainable Polyols Production. Ind. Crops Prod. 2019, 137, 687–693. DOI: 10.1016/j.indcrop.2019.05.075.
  • Cao, Y.; Zhang, C.; Tsang, D. C. W.; Fan, J.; Clark, J. H.; Zhang, S. Hydrothermal Liquefaction of Lignin to Aromatic Chemicals: Impact of Lignin Structure. Ind. Eng. Chem. Res. 2020, 59, 16957–16969. DOI: 10.1021/acs.iecr.0c01617.
  • Sequeiros, A.; Serrano, L.; Briones, R.; Labidi, J. Lignin Liquefaction Under Microwave Heating. J. Appl. Polym. Sci. 2013, 130, 3292–3298. DOI: 10.1002/app.39577.
  • Hu, S.; Luo, X.; Li, Y. Polyols and Polyurethanes from the Liquefaction of Lignocellulosic Biomass. ChemSusChem 2014, 7, 66–72. DOI: 10.1002/cssc.201300760.
  • Hassan, E. M.; Shukry, N. Polyhydric Alcohol Liquefaction of Some Lignocellulosic Agricultural Residues. Ind. Crops Prod. 2007, 27, 33–38. DOI: 10.1016/j.indcrop.2007.07.004.
  • Patil, V.; Adhikari, S.; Cross, P.; Jahromi, H. Progress in the Solvent Depolymerization of Lignin. Renew. Sustain. Energy Rev. 2020, 133, 110359. DOI: 10.1016/j.rser.2020.110359.
  • Zhang, H.; Luo, J.; Li, Y.; Guo, H.; Xiong, L.; Chen, X. Acid-Catalyzed Liquefaction of Bagasse in the Presence of Polyhydric Alcohol. Appl. Biochem. Biotechnol. 2013, 170, 1780–1791. DOI: 10.1007/s12010-013-0300-5.
  • Vale, M.; Mateus, M. M.; Galhano dos Santos, R.; Nieto de Castro, C.; de Schrijver, A.; Bordado, J. C.; Marques, A. C. Replacement of Petroleum-Derived Diols by Sustainable Biopolyols in One Component Polyurethane Foams. J. Clean. Prod. 2019, 212, 1036–1043. DOI: 10.1016/j.jclepro.2018.12.088.
  • Paulo, I.; Costa, L.; Rodrigues, A.; Orišková, S.; Matos, S.; Gonçalves, D.; Gonçalves, A. R.; Silva, L.; Vieira, S.; Bordado, J. C.; et al. Acid-Catalyzed Liquefaction of Biomasses from Poplar Clones for Short Rotation Coppice Cultivations. Molecules 2022, 27, 304. DOI: 10.3390/molecules27010304.
  • Zhang, Z.; O’Hara, I. M.; Doherty, W. O. S. Pretreatment of Sugarcane Bagasse by Acidified Aqueous Polyol Solutions. Cellulose 2013, 20, 3179–3190. DOI: 10.1007/s10570-013-0068-3.
  • Silva, S. H. F.; Gordobil, O.; Labidi, J. Organic Acids as a Greener Alternative for the Precipitation of Hardwood Kraft Lignins from the Industrial Black Liquor. Int. J. Biol. Macromol. 2020, 142, 583–591. DOI: 10.1016/j.ijbiomac.2019.09.133.
  • da Silva, S. H. F.; dos Santos, P. S. B.; Thomas da Silva, D.; Briones, R.; Gatto, D. A.; Labidi, J. Kraft Lignin-Based Polyols by Microwave: Optimizing Reaction Conditions. J. Wood Chem. Technol. 2017, 37, 343–358. DOI: 10.1080/02773813.2017.1303513.
  • Mohammadpour, R.; Mir Mohamad Sadeghi, G. Effect of Liquefied Lignin Content on Synthesis of Bio-Based Polyurethane Foam for Oil Adsorption Application. J. Polym. Environ. 2020, 28, 892–905. DOI: 10.1007/s10924-019-01650-5.
  • Maia, L. S.; Zanini, N. C.; Camani, P. H.; Medeiros, S. F.; Rosa, D. S.; Mulinari, D. R. PU Foams Resistance Against Natural Weathering Aging : The Effect of Coffee Husk Residues in Different Contents. J. Polym. Environ. 2022, 31, 2073–2092. No. 0123456789. DOI: 10.1007/s10924-022-02720-x.
  • Peyrton, J.; Avérous, L. Structure-Properties Relationships of Cellular Materials from Biobased Polyurethane Foams. Mater. Sci. Eng. R Reports 2021, 145, 100608. DOI: 10.1016/j.mser.2021.100608.
  • Vieira, F. R.; Gama, N. V.; Evtuguin, D. V.; Amorim, C. O.; Amaral, V. S.; Pinto, P. C. O. R.; Barros-Timmons, A. Bio-Based Polyurethane Foams from Kraft Lignin with Improved Fire Resistance. Polymers (Basel) 2023, 15, 1074. DOI: 10.3390/polym15051074.
  • Carriço, C. S.; Fraga, T.; Carvalho, V. E.; Pasa, V. M. D. Polyurethane Foams for Thermal Insulation Uses Produced from Castor Oil and Crude Glycerol Biopolyols. Molecules 2017, 22, 1091. DOI: 10.3390/molecules22071091.
  • Hayati, A. N.; Evans, D. A. C.; Laycock, B.; Martin, D. J.; Annamalai, P. K. A Simple Methodology for Improving the Performance and Sustainability of Rigid Polyurethane Foam by Incorporating Industrial Lignin. Ind. Crops Prod. 2018, 117, 149–158. DOI: 10.1016/j.indcrop.2018.03.006.
  • Duval, A.; Vidal, D.; Sarbu, A.; René, W.; Avérous, L. Scalable Single-Step Synthesis of Lignin-Based Liquid Polyols with Ethylene Carbonate for Polyurethane Foams. Mater. Today Chem. 2022, 24, 100793. DOI: 10.1016/j.mtchem.2022.100793.
  • Mahmood, N.; Yuan, Z.; Schmidt, J.; Xu, C. Preparation of Bio-Based Rigid Polyurethane Foam Using Hydrolytically Depolymerized Kraft Lignin via Direct Replacement or Oxypropylation. Eur. Polym. J. 2015, 68, 1–9. DOI: 10.1016/j.eurpolymj.2015.04.030.
  • Li, Y.; Ragauskas, A. J. Kraft Lignin-Based Rigid Polyurethane Foam. J. Wood Chem. Technol. 2012, 32, 210–224. DOI: 10.1080/02773813.2011.652795.
  • Delucis, R. d A.; Magalhães, W. L. E.; Petzhold, C. L.; Amico, S. C. Forest-Based Resources as Fillers in Biobased Polyurethane Foams. J. Appl. Polym. Sci. 2018, 135, 45684. DOI: 10.1002/app.45684.
  • Haridevan, H.; Martin, D. J.; Evans, D. A. C.; Ragauskas, A. J.; Annamalai, P. K. Valorisation of Technical Lignin in Rigid Polyurethane Foam: A Critical Evaluation on Trends, Guidelines and Future Perspectives. Green Chem. 2021, 23, 8725–8753. DOI: 10.1039/D1GC02744A.
  • Farage, R. M. P.; Quina, M. J.; Gando-Ferreira, L.; Silva, C. M.; de Souza, J. J. L. L.; Torres, C. M. M. E. Kraft Pulp Mill Dregs and Grits as Permeable Reactive Barrier for Removal of Copper and Sulfate in Acid Mine Drainage. Sci. Rep. 2020, 10, 4083. DOI: 10.1038/s41598-020-60780-2.
  • Flôres, C. C.; Rufino, T. d C.; Oliveira, M. P. Effect of Kraft Lignin and Palm Kernel Oil as Substitutes of Petroleum-Based Polyols on the Properties of Viscoelastic Polyurethane Foams. J. Polym. Res. 2021, 28, 481. DOI: 10.1007/s10965-021-02827-0.
  • Dessbesell, L.; Paleologou, M.; Leitch, M.; Pulkki, R.; Xu, C. Global Lignin Supply Overview and Kraft Lignin Potential as an Alternative for Petroleum-Based Polymers. Renew. Sustain. Energy Rev. 2020, 123, 109768.) DOI: 10.1016/j.rser.2020.109768.
  • Ma, X.; Chen, J.; Zhu, J.; Yan, N. Lignin‐Based Polyurethane: Recent Advances and Future Perspectives. Macromol. Rapid Commun. 2021, 42, 2000492. DOI: 10.1002/marc.202000492.
  • Terrell, E.; Dellon, L. D.; Dufour, A.; Bartolomei, E.; Broadbelt, L. J.; Garcia-Perez, M. A Review on Lignin Liquefaction: Advanced Characterization of Structure and Microkinetic Modeling. Ind. Eng. Chem. Res. 2020, 59, 526–555. DOI: 10.1021/acs.iecr.9b05744.
  • Liu, Z.-H.; Hao, N.; Shinde, S.; Pu, Y.; Kang, X.; Ragauskas, A. J.; Yuan, J. S. Defining Lignin Nanoparticle Properties Through Tailored Lignin Reactivity by Sequential Organosolv Fragmentation Approach (SOFA). Green Chem. 2019, 21, 245–260. DOI: 10.1039/C8GC03290D.
  • Šurina, I.; Jablonský, M.; Ház, A.; Sladková, A.; Briškárová, A.; Kačík, F.; Šima, J. Characterization of Non-Wood Lignin Precipitated with Sulphuric Acid of Various Concentrations. BioResources 2015, 10, 1408–1423. DOI: 10.15376/biores.10.1.1408-1423.
  • Andeme Ela, R. C.; Spahn, L.; Safaie, N.; Ferrier, R. C.; Ong, R. G. Understanding the Effect of Precipitation Process Variables on Hardwood Lignin Characteristics and Recovery from Black Liquor. ACS Sustainable Chem. Eng. 2020, 8, 13997–14005. DOI: 10.1021/acssuschemeng.0c03692.
  • Bryśkiewicz, A.; Zieleniewska, M.; Przyjemska, K.; Chojnacki, P.; Ryszkowska, J. Modification of Flexible Polyurethane Foams by the Addition of Natural Origin Fillers. Polym. Degrad. Stab. 2016, 132, 32–40. DOI: 10.1016/j.polymdegradstab.2016.05.002.
  • Wang, Y. Y.; Meng, X.; Pu, Y.; Ragauskas, A. J. Recent Advances in the Application of Functionalized Lignin in Value-Added Polymeric Materials. Polymers (Basel) 2020, 12, 2277. DOI: 10.3390/polym12102277.
  • Azadi, P.; Carrasquillo-Flores, R.; Pagán-Torres, Y. J.; Gürbüz, E. I.; Farnood, R.; Dumesic, J. A. Catalytic Conversion of Biomass Using Solvents Derived from Lignin. Green Chem. 2012, 14, 1573–1576. DOI: 10.1039/c2gc35203f.
  • Zhang, X.; Wilson, K.; Lee, A. F. Heterogeneously Catalyzed Hydrothermal Processing of C5-C6 Sugars. Chem. Rev. 2016, 116, 12328–12368. DOI: 10.1021/acs.chemrev.6b00311.
  • Xue, B. L.; Wen, J. L.; Sun, R. C. Producing Lignin-Based Polyols through Microwave-Assisted Liquefaction for Rigid Polyurethane Foam Production. Materials (Basel) 2015, 8, 586–599. DOI: 10.3390/ma8020586.
  • Wang, Y.; Cai, D.; Chen, C.; Wang, Z.; Qin, P.; Tan, T. Efficient Magnesium Lactate Production with in Situ Product Removal by Crystallization. Bioresour. Technol. 2015, 198, 658–663. DOI: 10.1016/j.biortech.2015.09.058.
  • Hewson, W. B.; Hibbert, H. Studies on Lignin and Related Compounds. LXV. Re-Ethanolysis of Isolated Lignins. J. Am. Chem. Soc. 1943, 65, 1173–1176. DOI: 10.1021/ja01246a044.
  • Mohammadpour, R.; Mir Mohamad Sadeghi, G. Potential Use of Black Liquor as Lignin Source for Synthesis of Polyurethane Foam. J. Polym. Res. 2020, 27, 1–12. DOI: 10.1007/s10965-020-02334-8.
  • Eraghi Kazzaz, A.; Hosseinpour Feizi, Z.; Fatehi, P. Grafting Strategies for Hydroxy Groups of Lignin for Producing Materials. Green Chem. 2019, 21, 5714–5752. DOI: 10.1039/C9GC02598G.
  • Amundarain, I.; Miguel-Fern, R.; Asueta, A.; Garc, S.; Arnaiz, S. Synthesis of Rigid Polyurethane Foams Incorporating Polyols from Chemical Recycling of Post-Industrial Waste. Polymers (Basel) 2022, 14, 1157. DOI: 10.3390/polym14061157.
  • He, M.; Sun, X.; Li, Z. Bending and Compressive Properties of Cross-Laminated Timber (CLT) Panels Made from Canadian Hemlock. Constr. Build. Mater. 2018, 185, 175–183. DOI: 10.1016/j.conbuildmat.2018.07.072.
  • Jin, Y.; Ruan, X.; Cheng, X.; Lü, Q. Liquefaction of Lignin by Polyethyleneglycol and Glycerol. Bioresour. Technol. 2011, 102, 3581–3583. DOI: 10.1016/j.biortech.2010.10.050.
  • Xue, B.; Huang, P.; Sun, Y.; Li, X.; Sun, R. Hydrolytic Depolymerization of Corncob Lignin in the View of a Bio-Based Rigid Polyurethane Foam. RSC Adv. 2017, 7, 6123–6130. DOI: 10.1039/C6RA26318F.
  • Roy, R.; Rahman, M. S.; Amit, T. A.; Jadhav, B. Recent Advances in Lignin Depolymerization Techniques: A Comparative Overview of Traditional and Greener Approaches. Biomass 2022, 2, 130–154. DOI: 10.3390/biomass2030009.
  • Mahmood, N.; Yuan, Z.; Schmidt, J.; Xu, C. C. Hydrolytic Depolymerization of Hydrolysis Lignin: Effects of Catalysts and Solvents. Bioresour. Technol. 2015, 190, 416–419. DOI: 10.1016/j.biortech.2015.04.074.
  • Lundquist, K. Low-Molecular Weight Lignin Hydrolysis Products. Appl. Polym. Symp. 1976, 28, 1393–1407.
  • Carriço, C. S.; Fraga, T.; Pasa, V. M. D. Production and Characterization of Polyurethane Foams from a Simple Mixture of Castor Oil, Crude Glycerol and Untreated Lignin as Bio-Based Polyols. Eur. Polym. J. 2016, 85, 53–61. DOI: 10.1016/j.eurpolymj.2016.10.012.
  • Delucis, R. D. A.; Magalhães, W. L. E.; Petzhold, C. L.; Amico, S. C.; Luiz, W.; Magalhões, E. Thermal and Combustion Features of Rigid Polyurethane Biofoams Filled with Four Forest-Based Wastes. Polym. Compos. 2018, 39, E1770–E1777. DOI: 10.1002/pc.24784.
  • Gómez-Fernández, S.; Ugarte, L.; Calvo-Correas, T.; Peña-Rodríguez, C.; Corcuera, M. A.; Eceiza, A. Properties of Flexible Polyurethane Foams Containing Isocyanate Functionalized Kraft Lignin. Ind. Crops Prod. 2017, 100, 51–64. DOI: 10.1016/j.indcrop.2017.02.005.
  • Lisperguer, J.; Perez, P.; Urizar, S. Structure and Thermal Properties of Lignins: Characterization by Infrared Spectroscopy and Differential Scanning Calorimetry. J. Chil. Chem. Soc. 2009, 54, 460–463. DOI: 10.4067/S0717-97072009000400030.
  • Rostami-Tapeh-Esmaeil, E.; Rodrigue, D. Morphological, Mechanical and Thermal Properties of Rubber Foams : A Review Based on Recent Investigations. Materials (Basel) 2023, 16, 1934. DOI: 10.3390/ma16051934.
  • Formela, K.; Hejna, A.; Zedler, Ł.; Przybysz, M.; Ryl, J.; Reza, M.; Piszczyk, Ł. Structural, Thermal and Physico-Mechanical Properties of Polyurethane/Brewers ‘Spent Grain Composite Foams Modi Fi Ed with Ground Tire Rubber. Ind. Crop. Prod 2017, 108, 844–852. DOI: 10.1016/j.indcrop.2017.07.047.
  • Chang, L.; Xue, Y. U.; Hsieh, F. Dynamic-Mechanical Study of Water-Blown Rigid Polyurethane Foams with and Without Soy Flour. J. Appl Polym. Sci. 2001, 81, 2027–2035. DOI: 10.1002/app.1635.abs.
  • Albertin, A.; Jos, I.; Araújo, D.; Clara, A.; Miranda, M.; Manes, A.; Campos, S. Influence of Hybridization on the Mechanical and Dynamic Mechanical Properties of Aramid/S2-Glass Hybrid Laminates. Mater. Today Commun. 2022, 32, 104021. DOI: 10.1016/j.mtcomm.2022.104021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.