437
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances in photocatalytic lignin depolymerization: photocatalytic materials and mechanisms

ORCID Icon, , , &

References

  • Zimmerman, J. B.; Anastas, P. T.; Erythropel, H. C.; Leitner, W. Designing for a Green Chemistry Future. Science 2020, 367, 397–400. DOI: 10.1126/science.aay3060.
  • Wu, X.; Xie, S.; Zhang, H.; Zhang, Q.; Sels, B. F.; Wang, Y. Metal Sulfide Photocatalysts for Lignocellulose Valorization. Adv. Mater. 2021, 33, e2007129. DOI: 10.1002/adma.202007129.
  • Evstigneyev, E. I.; Kalugina, A. V.; Ivanov, A. Y.; Aleksander, V. V. Contents of α-O-4 and β-O-4 Bonds in Native Lignin and Isolated Lignin Preparations. J. Wood Chem. Technol. 2017, 37, 294–306. DOI: 10.1080/02773813.2017.1297832.
  • O’Dea, R. M.; Willie, J. A.; Epps, T. H.III. 100th Anniversary of Macromolecular Science Viewpoint: Polymers from Lignocellulosic Biomass. Current Challenges and Future Opportunities. ACS Macro Lett. 2020, 9, 476–493. DOI: 10.1021/acsmacrolett.0c00024.
  • Zakzeski, J.; Bruijnincx, P. C.; Jongerius, A. L.; Weckhuysen, B. M. The Catalytic Valorization of Lignin for the Production of Renewable Chemicals. Chem. Rev. 2010, 110, 3552–3599. DOI: 10.1021/cr900354u.
  • Lora, J. H.; Glasser, W. G. Recent Industrial Applications of Lignin a Sustainable Alternative to Nonrenewable Materials. J. Polym. Environ. 2002, 10, 39–48. DOI: 10.1023/A:1021070006895.
  • Venkatesan Savunthari, K.; Arunagiri, D.; Shanmugam, S.; Ganesan, S.; Arasu, M. V.; Al-Dhabi, N. A.; Chi, N. T. L.; Ponnusamy, V. K. Green Synthesis of Lignin Nanorods/g-C(3)N(4) Nanocomposite Materials for Efficient Photocatalytic Degradation of Triclosan in Environmental Water. Chemosphere 2021, 272, 129801. DOI: 10.1016/j.chemosphere.2021.129801.
  • Fan, Y.; Liu, C.; Kong, X.; Han, Y.; Lei, M.; Xiao, R. A New Perspective on Polyethylene-Promoted Lignin Pyrolysis with Mass Transfer and Radical Explanation. Green Energy Environ. 2022, 7, 1318–1326. DOI: 10.1016/j.gee.2021.02.004.
  • Wang, X.; Feng, S.; Wang, Y.; Zhao, Y.; Huang, S.; Wang, S.; Ma, X. Enhanced Hydrodeoxygenation of Lignin-Derived Anisole to Arenes Catalyzed by Mn-Doped Cu/Al2O3. Green Energy Environ. 2021, 8, 927–937. DOI: 10.1016/j.gee.2021.12.004.
  • Dabral, S.; Engel, J.; Mottweiler, J.; Spoehrle, S. S. M.; Lahive, C. W.; Bolm, C. Mechanistic Studies of Base-Catalysed Lignin Depolymerisation in Dimethyl Carbonate. Green Chem. 2018, 20, 170–182. DOI: 10.1039/C7GC03110F.
  • Shen, X.; Meng, Q.; Mei, Q.; Liu, H.; Yan, J.; Song, J.; Tan, D.; Chen, B.; Zhang, Z.; Yang, G.; et al. Selective Catalytic Transformation of Lignin with Guaiacol as the Only Liquid Product. Chem. Sci. 2019, 11, 1347–1352. DOI: 10.1039/c9sc05892c.
  • Guo, H.; Miles-Barrett, D. M.; Neal, A. R.; Zhang, T.; Li, C.; Westwood, N. J. Unravelling the Enigma of Lignin(OX): Can the Oxidation of Lignin Be Controlled? Chem. Sci. 2018, 9, 702–711. DOI: 10.1039/c7sc03520a.
  • Chen, L.; Xin, J.; Ni, L.; Dong, H.; Yan, D.; Lu, X.; Zhang, S. Conversion of Lignin Model Compounds under Mild Conditions in Pseudo-Homogeneous Systems. Green Chem. 2016, 18, 2341–2352. DOI: 10.1039/C5GC03121D.
  • Kang, Y.; Yao, X.; Yang, Y.; Xu, J.; Xin, J.; Zhou, Q.; Li, M.; Lu, X.; Zhang, S. Metal-Free and Mild Photo-Thermal Synergism in Ionic Liquids for Lignin Cα–Cβ Bond Cleavage to Provide Aldehydes. Green Chem. 2021, 23, 5524–5534. DOI: 10.1039/D1GC00784J.
  • Liu, W. J.; Li, W. W.; Jiang, H.; Yu, H. Q. Fates of Chemical Elements in Biomass during Its Pyrolysis. Chem. Rev. 2017, 117, 6367–6398. DOI: 10.1021/acs.chemrev.6b00647.
  • Li, L.; Dong, L.; Li, D.; Guo, Y.; Liu, X.; Wang, Y. Hydrogen-Free Production of 4-Alkylphenols from Lignin via Self-Reforming-Driven Depolymerization and Hydrogenolysis. ACS Catal. 2020, 10, 15197–15206. DOI: 10.1021/acscatal.0c03170.
  • Wu, X.; Luo, N.; Xie, S.; Zhang, H.; Zhang, Q.; Wang, F.; Wang, Y. Photocatalytic Transformations of Lignocellulosic Biomass into Chemicals. Chem. Soc. Rev. 2020, 49, 6198–6223. DOI: 10.1039/d0cs00314j.
  • Xiang, Z.; Han, W.; Deng, J.; Zhu, W.; Zhang, Y.; Wang, H. Photocatalytic Conversion of Lignin into Chemicals and Fuels. ChemSusChem 2020, 13, 4199–4213. DOI: 10.1002/cssc.202000601.
  • Liu, C.; Wu, S.; Zhang, H.; Xiao, R. Catalytic Oxidation of Lignin to Valuable Biomass-Based Platform Chemicals: A Review. Fuel Process. Technol. 2019, 191, 181–201. DOI: 10.1016/j.fuproc.2019.04.007.
  • Behling, R.; Valange, S.; Chatel, G. Heterogeneous Catalytic Oxidation for Lignin Valorization into Valuable Chemicals: What Results? What Limitations? What Trends? Green Chem. 2016, 18, 1839–1854. DOI: 10.1039/C5GC03061G.
  • Gigli, M.; Crestini, C. Fractionation of Industrial Lignins: Opportunities and Challenges. Green Chem. 2020, 22, 4722–4746. DOI: 10.1039/D0GC01606C.
  • Chen, H.; Wan, K.; Zheng, F.; Zhang, Z.; Zhang, Y.; Long, D. Mechanism Insight into Photocatalytic Conversion of Lignin for Valuable Chemicals and Fuels Production: A State-of-the-Art Review. Renew. Sustain. Energy Rev. 2021, 147, 111217. DOI: 10.1016/j.rser.2021.111217.
  • Liu, X.; Bouxin, F. P.; Fan, J.; Budarin, V. L.; Hu, C.; Clark, J. H. Recent Advances in the Catalytic Depolymerization of Lignin towards Phenolic Chemicals: A Review. ChemSusChem 2020, 13, 4296–4317. DOI: 10.1002/cssc.202001213.
  • Crites, C.-O. L.; Gomes de Mendonça, F.; Netto-Ferreira, J. C.; Baker, R. T.; Hallett-Tapley, G. L.; Tremblay, L. Exploiting the Photocatalytic Activity of TiO2 towards the Depolymerization of Kraft Lignin. New J. Chem. 2021, 45, 15371–15377. DOI: 10.1039/D1NJ03043D.
  • Wang, H.; Pu, Y.; Ragauskas, A.; Yang, B. From Lignin to Valuable Products-Strategies, Challenges, and Prospects. Bioresour. Technol. 2019, 271, 449–461. DOI: 10.1016/j.biortech.2018.09.072.
  • Serrano, L.; Cecilia, J. A.; Garcia-Sancho, C.; Garcia, A. Lignin Depolymerization to BTXs. Top. Curr. Chem. 2019, 377,26. DOI: 10.1007/s41061-019-0251-6.
  • Yu, X.; Wei, Z.; Lu, Z.; Pei, H.; Wang, H. Activation of Lignin by Selective Oxidation: An Emerging Strategy for Boosting Lignin Depolymerization to Aromatics. Bioresour. Technol. 2019, 291, 121885. DOI: 10.1016/j.biortech.2019.121885.
  • Sannigrahi, P.; Pu, Y.; Ragauskas, A. Cellulosic Biorefineries—Unleashing Lignin Opportunities. Curr. Opin. Environ. Sustain. 2010, 2, 383–393. DOI: 10.1016/j.cosust.2010.09.004.
  • Kärkäs, M. D. Lignin Hydrogenolysis: Improving Lignin Disassembly through Formaldehyde Stabilization. ChemSusChem 2017, 10, 2111–2115. DOI: 10.1002/cssc.201700436.
  • Li, M.; Pu, Y.; Ragauskas, A. J. Current Understanding of the Correlation of Lignin Structure with Biomass Recalcitrance. Front. Chem. 2016, 4, 45. DOI: 10.3389/fchem.2016.00045.
  • Li, C.; Zhao, X.; Wang, A.; Huber, G. W.; Zhang, T. Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chem. Rev. 2015, 115, 11559–11624. DOI: 10.1021/acs.chemrev.5b00155.
  • Zhang, C.; Wang, F. Catalytic Lignin Depolymerization to Aromatic Chemicals. Acc. Chem. Res. 2020, 53, 470–484. DOI: 10.1021/acs.accounts.9b00573.
  • Zhilong, S.; Kecheng, L. The Effect of Fiber Surface Lignin on Interfiber Bonding. J. Wood Chem. Technol. 2006, 26, 231–244. DOI: 10.1080/02773810601023438.
  • Hou-Min, C.; Xiao, J. Biphenyl Structure and Its Impact on the Macromolecular Structure of Lignin: A Critical Review. J. Wood Chem. Technol. 2020, 40, 81–90. DOI: 10.1080/02773813.2019.1697297.
  • Shuai, L.; Amiri, M. T.; Questell-Santiago, Y. M.; Héroguel, F.; Li, Y.; Kim, H.; Meilan, R.; Chapple, C.; Ralph, J.; Luterbacher, J. S.; et al. Formaldehyde Stabilization Facilitates Lignin Monomer Production during Biomass Depolymerization. Science 2016, 354, 329–333. DOI: 10.1126/science.aaf7810.
  • Ekielski, A.; Mishra, P. K. Lignin for Bioeconomy: The Present and Future Role of Technical Lignin. Int. J. Mol. Sci. 2020, 22, 63. DOI: 10.3390/ijms22010063.
  • Vishtal, A.; Kraslawski, A. Challenges in Industrial Applications of Technical Lignins. BioRes 2011, 6, 3547–3568. DOI: 10.15376/biores.6.3.3547-3568.
  • Feizi, Z. H.; Kazzaz, A. E.; Kong, F.; Fatehi, P. Evolving a Flocculation Process for Isolating Lignosulfonate from Solution. Sep. Purif. Technol. 2019, 222, 254–263. DOI: 10.1016/j.seppur.2019.04.042.
  • Tarasov, D.; Leitch, M.; Fatehi, P. Lignin-Carbohydrate Complexes: Properties, Applications, Analyses, and Methods of Extraction: A Review. Biotechnol. Biofuels 2018, 11, 269. DOI: 10.1186/s13068-018-1262-1.
  • Tejado, A.; Peña, C.; Labidi, J.; Echeverria, J. M.; Mondragon, I. Physico-Chemical Characterization of Lignins from Different Sources for Use in Phenol-Formaldehyde Resin Synthesis. Bioresour. Technol. 2007, 98, 1655–1663. DOI: 10.1016/j.biortech.2006.05.042.
  • Chakar, F. S.; Ragauskas, A. J. Review of Current and Future Softwood Kraft Lignin Process Chemistry. Ind. Crops Prod. 2004, 20, 131–141. DOI: 10.1016/j.indcrop.2004.04.016.
  • Schutyser, W.; Renders, T.; Van den Bosch, S.; Koelewijn, S.-F.; Beckham, G. T.; Sels, B. F. Chemicals from Lignin: An Interplay of Lignocellulose Fractionation, Depolymerisation, and Upgrading. Chem. Soc. Rev. 2018, 47, 852–908. DOI: 10.1039/c7cs00566k.
  • Li, S.-H.; Liu, S.; Colmenares, J. C.; Xu, Y.-J. A Sustainable Approach for Lignin Valorization by Heterogeneous Photocatalysis. Green Chem. 2016, 18, 594–607. DOI: 10.1039/C5GC02109J.
  • Galkin, M. V.; Samec, J. S. Lignin Valorization through Catalytic Lignocellulose Fractionation: A Fundamental Platform for the Future Biorefinery. ChemSusChem 2016, 9, 1544–1558. DOI: 10.1002/cssc.201600237.
  • Eraghi Kazzaz, A.; Hosseinpour Feizi, Z.; Fatehi, P. Grafting Strategies for Hydroxy Groups of Lignin for Producing Materials. Green Chem. 2019, 21, 5714–5752. DOI: 10.1039/C9GC02598G.
  • Eraghi Kazzaz, A.; Fatehi, P. Technical Lignin and Its Potential Modification Routes: A Mini-Review. Ind. Crops Prod. 2020, 154, 112732. DOI: 10.1016/j.indcrop.2020.112732.
  • Ruan, Y. L. Rapid Cell Expansion and Cellulose Synthesis Regulated by Plasmodesmata and Sugar: Insights from the Single-Celled Cotton Fibre. Funct. Plant Biol. 2007, 34, 1–10. DOI: 10.1071/FP06234.
  • Chio, C.; Sain, M.; Qin, W. Lignin Utilization: A Review of Lignin Depolymerization from Various Aspects. Renew. Sustain. Energy Rev. 2019, 107, 232–249. DOI: 10.1016/j.rser.2019.03.008.
  • Usmani, Z.; Sharma, M.; Gupta, P.; Karpichev, Y.; Gathergood, N.; Bhat, R.; Gupta, V. K. Ionic Liquid Based Pretreatment of Lignocellulosic Biomass for Enhanced Bioconversion. Bioresour. Technol. 2020, 304, 123003. DOI: 10.1016/j.biortech.2020.123003.
  • Sainsbury, P. D.; Hardiman, E. M.; Ahmad, M.; Otani, H.; Seghezzi, N.; Eltis, L. D.; Bugg, T. D. H. Breaking down Lignin to High-Value Chemicals: The Conversion of Lignocellulose to Vanillin in a Gene Deletion Mutant of Rhodococcus jostii RHA1. ACS Chem. Biol. 2013, 8, 2151–2156. DOI: 10.1021/cb400505a.
  • Ahmad, M.; Taylor, C. R.; Pink, D.; Burton, K.; Eastwood, D.; Bending, G. D.; Bugg, T. D. H. Development of Novel Assays for Lignin Degradation: Comparative Analysis of Bacterial and Fungal Lignin Degraders. Mol. Biosyst. 2010, 6, 815–821. DOI: 10.1039/b908966g.
  • Pu, Y.; Jiang, N.; Ragauskas, A. J. Ionic Liquid as a Green Solvent for Lignin. J. Wood Chem. Technol. 2007, 27, 23–33. DOI: 10.1080/02773810701282330.
  • Heitz, M.; Wu, G.; Lapointe, J.; Rubio, M. Hydrolytic Depolymerization of a Steam Explosion Lignin. J. Wood Chem. Technol. 1995, 15, 515–528. DOI: 10.1080/02773819508009523.
  • Wu, K.; Cao, M.; Zeng, Q.; Li, X. Radical and (Photo)Electron Transfer Induced Mechanisms for Lignin Photo- and Electro-Catalytic Depolymerization. Green Energy Environ. 2022, 8, 383–405. DOI: 10.1016/j.gee.2022.02.011.
  • Liu, H.; Li, H.; Lu, J.; Zeng, S.; Wang, M.; Luo, N.; Xu, S.; Wang, F. Photocatalytic Cleavage of C–C Bond in Lignin Models under Visible Light on Mesoporous Graphitic Carbon Nitride through π–π Stacking Interaction. ACS Catal. 2018, 8, 4761–4771. DOI: 10.1021/acscatal.8b00022.
  • Cheng, X.; Liu, B.; Zhao, H.; Zhang, H.; Wang, J.; Li, Z.; Li, B.; Chen, Z.; Hu, J. Interfacial Effect between Ni2P/CdS for Simultaneously Heightening Photocatalytic Hydrogen Production and Lignocellulosic Biomass Photorefining. J. Colloid Interface Sci. 2024, 655, 943–952. DOI: 10.1016/j.jcis.2023.11.031.
  • Li, C.; Wang, H.; Naghadeh, S. B.; Zhang, J. Z.; Fang, P. Visible Light Driven Hydrogen Evolution by Photocatalytic Reforming of Lignin and Lactic Acid Using One-Dimensional NiS/CdS Nanostructures. Appl. Catal. B 2018, 227, 229–239. DOI: 10.1016/j.apcatb.2018.01.038.
  • Granone, L. I.; Sieland, F.; Zheng, N.; Dillert, R.; Bahnemann, D. W. Photocatalytic Conversion of Biomass into Valuable Products: A Meaningful Approach? Green Chem. 2018, 20, 1169–1192. DOI: 10.1039/C7GC03522E.
  • Kubacka, A.; Fernández-García, M.; Colón, G. Advanced Nanoarchitectures for Solar Photocatalytic Applications. Chem. Rev. 2012, 112, 1555–1614. DOI: 10.1021/cr100454n.
  • Liu, X.; Duan, X.; Wei, W.; Wang, S.; Ni, B.-J. Photocatalytic Conversion of Lignocellulosic Biomass to Valuable Products. Green Chem. 2019, 21, 4266–4289. DOI: 10.1039/C9GC01728C.
  • Haghighi, M.; Rahmani, F.; Kariminejad, F.; Akbari Sene, R. Photodegradation of Lignin from Pulp and Paper Mill Effluent Using TiO2/PS Composite under UV-LED Radiation: Optimization, Toxicity Assessment and Reusability Study. Process Saf. Environ. Protec. 2019, 122, 48–57. DOI: 10.1016/j.psep.2018.11.020.
  • Zhang, M.; Xu, H.; Wu, L.; Tan, Y.; Kong, D.; Yimiti, M. Photocatalytic Degradation of Lignin by Low Content g-C3N4 Modified TiO2 under Visible Light. New J. Chem. 2022, 46, 8644–8652. DOI: 10.1039/D2NJ00859A.
  • Sharma, S.; Kumar, S.; Arumugam, S. M.; Elumalai, S. Promising Photocatalytic Degradation of Lignin over Carbon Quantum Dots Decorated TiO2 Nanocomposite in Aqueous Condition. Appl. Catal. A 2020, 602, 117730. DOI: 10.1016/j.apcata.2020.117730.
  • Xu, J.; Li, M.; Yang, L.; Qiu, J.; Chen, Q.; Zhang, X.; Feng, Y.; Yao, J. Synergy of Ni Dopant and Oxygen Vacancies in ZnO for Efficient Photocatalytic Depolymerization of Sodium Lignosulfonate. Chem. Eng. J. 2020, 394, 125050. DOI: 10.1016/j.cej.2020.125050.
  • Kausar, S.; Ali Altaf, A.; Hamayun, M.; Danish, M.; Zubair, M.; Naz, S.; Muhammad, S.; Zaheer, M.; Ullah, S.; Badshah, A. Soft Template-Based Bismuth Doped Zinc Oxide Nanocomposites for Photocatalytic Depolymerization of Lignin. Inorg. Chim. Acta 2020, 502, 119390. DOI: 10.1016/j.ica.2019.119390.
  • Dong, H.; Ding, L.; Wu, L.; Mamatjan, Y. Degradation of Cotton Stalk Lignin by Carbon Dots Loaded Copper Oxide Synergistic Emulsion System. Nanotechnology 2022, 33, 485402. DOI: 10.1088/1361-6528/ac7240.
  • Chen, H.; Hong, D.; Wan, K.; Wang, J.; Niu, B.; Zhang, Y.; Long, D. Urchin-like Nb2O5 Hollow Microspheres Enabling Efficient and Selective Photocatalytic C–C Bond Cleavage in Lignin Models under Ambient Conditions. Chin. Chem. Lett. 2022, 33, 4357–4362. DOI: 10.1016/j.cclet.2021.11.084.
  • Mahdavi, M.; Mirmohammadi, M.; Baghdadi, M.; Mahpishanian, S. Visible Light Photocatalytic Degradation and Pretreatment of Lignin Using Magnetic Graphitic Carbon Nitride for Enhancing Methane Production in Anaerobic Digestion. Fuel 2022, 318, 123600. DOI: 10.1016/j.fuel.2022.123600.
  • Ku, C.; Li, K.; Guo, H.; Wu, Q.; Yan, L. One-Step Construction of Mesoporous Cyano and Sulfur Co-modified Carbon Nitride for Photocatalytic Valorization of Lignin to Functionalized Aromatics. Appl. Surf. Sci. 2022, 592, 153266. DOI: 10.1016/j.apsusc.2022.153266.
  • Liu, Z.; Huang, Y.; Xiao, G.; Li, P.; Su, H.; Sarina, S.; Zhu, H. Visible-Light-Driven Efficient Cleavage of β-O-4 Linkage in a Lignin Model Compound: Phenethyl Phenyl Ether Photocatalyzed by Titanium Nitride Nanoparticles. Energy Fuels 2021, 35, 13315–13324. DOI: 10.1021/acs.energyfuels.1c01718.
  • Ku, C.; Guo, H.; Li, K.; Wu, Q.; Yan, L. One-Step Fabrication of Mesoporous Sulfur-Doped Carbon Nitride for Highly Selective Photocatalytic Transformation of Native Lignin to Monophenolic Compounds. Chin. Chem. Lett. 2023, 34, 107298. DOI: 10.1016/j.cclet.2022.03.021.
  • Nawaukkaratharnant, N.; Sujaridworakun, P.; Mongkolkachit, C.; Wasanapiarnpong, T. Possible Use of Waste from Marcasite Jewelry Industry as Iron Pyrite Source Incorporated with Titanium Dioxide for Photodegradation of Lignin under a Halogen Tungsten Lamp. Mater. Lett. 2020, 271, 127778. DOI: 10.1016/j.matlet.2020.127778.
  • Jie, X.; Ming, L.; Jianhao, Q.; Xiong-Fei, Z.; Jianfeng, Y. Photocatalytic Depolymerization of Organosolv Lignin into Valuable Chemicals. Int. J. Biol. Macromol. 2021, 180, 403–410. DOI: 10.1016/j.ijbiomac.2021.03.067.
  • Chen, R.; Huang, Y.; Rao, C.; Su, H.; Pang, Y.; Lou, H.; Yang, D.; Qiu, X. Enhanced Photocatalytic Degradation of Lignin by In2S3 with Hydrophobic Surface and Metal Defects. Appl. Surf. Sci. 2022, 600, 154110. DOI: 10.1016/j.apsusc.2022.154110.
  • Yoo, H.; Lee, M.-W.; Lee, S.; Lee, J.; Cho, S.; Lee, H.; Cha, H. G.; Kim, H. S. Enhancing Photocatalytic β-O-4 Bond Cleavage in Lignin Model Compounds by Silver-Exchanged Cadmium Sulfide. ACS Catal. 2020, 10, 8465–8475. DOI: 10.1021/acscatal.0c01915.
  • Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. DOI: 10.1021/cr5001892.
  • Naimi-Joubani, M.; Shirzad-Siboni, M.; Yang, J.-K.; Gholami, M.; Farzadkia, M. Photocatalytic Reduction of Hexavalent Chromium with Illuminated ZnO/TiO2 Composite. J. Ind. Eng. Chem. 2015, 22, 317–323. DOI: 10.1016/j.jiec.2014.07.025.
  • Shahmoradi, B.; Maleki, A.; Byrappa, K. Removal of Disperse Orange 25 Usingin Situsurface-Modified Iron-Doped TiO2 Nanoparticles. Desalin. Water Treat. 2013, 53, 3615–3622. DOI: 10.1080/19443994.2013.873994.
  • Kobayakawa, K.; Sato, Y.; Nakamura, S.; Fujishima, A. Photodecomposition of Kraft Lignin Catalyzed by Titanium Dioxide. Bull. Chem. Soc. Jpn. 1989, 62, 3433–3436. DOI: 10.1246/bcsj.62.3433.
  • Daneshvar, N.; Salari, D.; Niaei, A.; Rasoulifard, M. H.; Khataee, A. R. Immobilization of TiO2 Nanopowder on Glass Beads for the Photocatalytic Decolorization of an Azo Dye C.I. Direct Red 23. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2005, 40, 1605–1617. DOI: 10.1081/ese-200060664.
  • M’Bra, I. C.; García-Muñoz, P.; Drogui, P.; Keller, N.; Trokourey, A.; Robert, D. Heterogeneous Photodegradation of Pyrimethanil and Its Commercial Formulation with TiO2 Immobilized on SiC Foams. J. Photochem. Photobiol, A 2019, 368, 1–6. DOI: 10.1016/j.jphotochem.2018.09.007.
  • Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Semiconductor Heterojunction Photocatalysts: Design, Construction, and Photocatalytic Performances. Chem. Soc. Rev. 2014, 43, 5234–5244. DOI: 10.1039/c4cs00126e.
  • Wang, J.; Xia, Y.; Dong, Y.; Chen, R.; Xiang, L.; Komarneni, S. Defect-Rich ZnO Nanosheets of High Surface Area as an Efficient Visible-Light Photocatalyst. Appl. Catal. B 2016, 192, 8–16. DOI: 10.1016/j.apcatb.2016.03.040.
  • Mazarji, M.; Alvarado-Morales, M.; Tsapekos, P.; Nabi-Bidhendi, G.; Mahmoodi, N. M.; Angelidaki, I. Graphene Based ZnO Nanoparticles to Depolymerize Lignin-Rich Residues via UV/Iodide Process. Environ. Int. 2019, 125, 172–183. DOI: 10.1016/j.envint.2018.12.062.
  • Subramanian, V.; Wolf, E. E.; Kamat, P. V. Catalysis with TiO2/Gold Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration. J. Am. Chem. Soc. 2004, 126, 4943–4950. DOI: 10.1021/ja0315199.
  • Jamila, G. S.; Sajjad, S.; Leghari, S. A. K.; Mahmood, T. Role of Nitrogen Doped Carbon Quantum Dots on CuO Nano-Leaves as Solar Induced Photo Catalyst. J. Phys. Chem. Solids 2020, 138, 109233. DOI: 10.1016/j.jpcs.2019.109233.
  • Zhong, M.; Pannecoucke, X.; Jubault, P.; Poisson, T. Recent Advances in Photocatalyzed Reactions Using Well-Defined Copper(I) complexes. Beilstein J. Org. Chem. 2020, 16, 451–481. DOI: 10.3762/bjoc.16.42.
  • Su, K.; Liu, H.; Gao, Z.; Fornasiero, P.; Wang, F. Nb(2)O(5)-Based Photocatalysts. Adv. Sci. 2021, 8, 2003156. DOI: 10.1002/advs.202003156.
  • Zhao, Y.; Eley, C.; Hu, J.; Foord, J. S.; Ye, L.; He, H.; Tsang, S. C. E. Shape-Dependent Acidity and Photocatalytic Activity of Nb2O5 Nanocrystals with an Active TT (001) Surface. Angew. Chem. Int. Ed. Engl. 2012, 51, 3846–3849. DOI: 10.1002/anie.201108580.
  • Li, F.; Yue, X.; Zhou, H.; Fan, J.; Xiang, Q. Construction of Efficient Active Sites through Cyano-Modified Graphitic Carbon Nitride for Photocatalytic CO2 Reduction. Chin. J. Catal. 2021, 42, 1608–1616. DOI: 10.1016/s1872-2067(20)63776-7.
  • Liu, J.; Li, Y.; Liu, H.; He, D. Photo-Thermal Synergistically Catalytic Conversion of Glycerol and Carbon Dioxide to Glycerol Carbonate over Au/ZnWO4-ZnO Catalysts. Appl. Catal. B 2019, 244, 836–843. DOI: 10.1016/j.apcatb.2018.12.018.
  • Chen, J.; Liu, W.; Song, Z.; Wang, H.; Xie, Y. Photocatalytic Degradation of β-O-4 Lignin Model Compound by In2S3 Nanoparticles under Visible Light Irradiation. Bioenerg. Res. 2017, 11, 166–173. DOI: 10.1007/s12155-017-9886-8.
  • Wang, H.; Wu, Y.; Xiao, T.; Yuan, X.; Zeng, G.; Tu, W.; Wu, S.; Lee, H. Y.; Tan, Y. Z.; Chew, J. W. Formation of Quasi-Core-Shell In2S3/Anatase TiO2@Metallic Ti3C2Tx Hybrids with Favorable Charge Transfer Channels for Excellent Visible-Light-Photocatalytic Performance. Appl. Catal. B 2018, 233, 213–225. DOI: 10.1016/j.apcatb.2018.04.012.
  • Xuan, J.; Xiao, W. J. Visible-Light Photoredox Catalysis. Angew. Chem. Int. Ed. Engl. 2012, 51, 6828–6838. DOI: 10.1002/anie.201200223.
  • Wang, Y.; Liu, Y.; He, J.; Zhang, Y. Redox-Neutral Photocatalytic Strategy for Selective C-C Bond Cleavage of Lignin and Lignin Models via PCET Process. Sci. Bull. 2019, 64, 1658–1666. DOI: 10.1016/j.scib.2019.09.003.
  • Cao, M.; Shao, S.; Wei, W.; Love, J. B.; Yue, Z.; Zhang, Y.; Zhang, X.; Xue, Y.; Yu, J.; Fan, X. Engineering Multiple Defect Sites on Ultrathin Graphitic Carbon Nitride for Efficiently Photocatalytic Conversion of Lignin into Monomeric Aromatics via Selective C–C Bond Scission. Appl. Surf. Sci. 2024, 643, 158653. DOI: 10.1016/j.apsusc.2023.158653.
  • Luo, N.; Wang, M.; Li, H.; Zhang, J.; Liu, H.; Wang, F. Photocatalytic Oxidation–Hydrogenolysis of Lignin β-O-4 Models via a Dual Light Wavelength Switching Strategy. ACS Catal. 2016, 6, 7716–7721. DOI: 10.1021/acscatal.6b02212.
  • Xu, J.; Li, M.; Qiu, J.; Zhang, X. F.; Yao, J. Fine Tuning of Cd(x)Zn(1−x)S for Photo-Depolymerization of Alkaline Lignin into Vanillin. Int. J. Biol. Macromol. 2021, 185, 297–305. DOI: 10.1016/j.ijbiomac.2021.06.104.
  • Lin, J.; Wu, X.; Xie, S.; Chen, L.; Zhang, Q.; Deng, W.; Wang, Y. Visible-Light-Driven Cleavage of C-O Linkage for Lignin Valorization to Functionalized Aromatics. ChemSusChem 2019, 12, 5023–5031. DOI: 10.1002/cssc.201902355.
  • Shao, S.; Wang, K.; Love, J. B.; Yu, J.; Du, S.; Yue, Z.; Fan, X. Water Promoted Photocatalytic Cβ-O Bonds Hydrogenolysis in Lignin Model Compounds and Lignin Biomass Conversion to Aromatic Monomers. Chem. Eng. J. 2022, 435, 134980. DOI: 10.1016/j.cej.2022.134980.
  • Mazarji, M.; Kuthiala, S.; Tsapekos, P.; Alvarado-Morales, M.; Angelidaki, I. Carbon Dioxide Anion Radical as a Tool to Enhance Lignin Valorization. Sci. Total Environ. 2019, 682, 47–58. DOI: 10.1016/j.scitotenv.2019.05.102.
  • Guadix-Montero, S.; Sankar, M. Review on Catalytic Cleavage of C–C Inter-Unit Linkages in Lignin Model Compounds: Towards Lignin Depolymerisation. Top. Catal. 2018, 61, 183–198. DOI: 10.1007/s11244-018-0909-2.
  • Wang, Y.; He, J.; Zhang, Y. CeCl 3 -Promoted Simultaneous Photocatalytic Cleavage and Amination of Cα–Cβ Bond in Lignin Model Compounds and Native Lignin. CCS Chem. 2020, 2, 107–117. DOI: 10.31635/ccschem.020.201900076.
  • Liang, D.; Wu, J.; Xie, C.; Wen, J.; Lyu, Y.; Sofer, Z.; Zheng, J.; Wang, S. Efficiently and Selectively Photocatalytic Cleavage of C–C Bond by C3N4 Nanosheets: Defect-Enhanced Engineering and Rational Reaction Route. Appl. Catal. B 2022, 317, 121690. DOI: 10.1016/j.apcatb.2022.121690.
  • Xu, J.; Shi, J.; Wang, J.; Zhang, L.; Wang, Y. Photocatalyst g-C3N4 for Efficient Cleavage of Lignin C–C Bonds in Micellar Aqueous Medium. Mol. Catal. 2022, 530, 112598. DOI: 10.1016/j.mcat.2022.112598.
  • Bu, M.; Lu, G.; Jiang, J.; Cai, C. Merging Visible-Light Photoredox and Micellar Catalysis: Arylation Reactions with Anilines Nitrosated In Situ. Catal. Sci. Technol. 2018, 8, 3728–3732. DOI: 10.1039/C8CY01221K.
  • La Sorella, G.; Strukul, G.; Scarso, A. Recent Advances in Catalysis in Micellar Media. Green Chem. 2015, 17, 644–683. DOI: 10.1039/C4GC01368A.
  • Yoon, J.; Oh, S.-G. Synthesis of Amine Modified ZnO Nanoparticles and Their Photocatalytic Activities in Micellar Solutions under UV Irradiation. J. Ind. Eng. Chem. 2021, 96, 390–396. DOI: 10.1016/j.jiec.2021.01.043.
  • Wu, X.; Lin, J.; Zhang, H.; Xie, S.; Zhang, Q.; Sels, B. F.; Wang, Y. Z-Scheme Nanocomposite with High Redox Ability for Efficient Cleavage of Lignin C–C Bonds under Simulated Solar Light. Green Chem. 2021, 23, 10071–10078. DOI: 10.1039/D1GC03455C.
  • Xu, J.; Zhang, X.; Long, J.; Ge, C. Photocatalytic Breaking of C–C Bonds in Lignin Models by Combining N-Doped Carbon Nitride and Persulfate in Micellar Aqueous Medium. J. Environ. Chem. Eng. 2023, 11, 110854. DOI: 10.1016/j.jece.2023.110854.
  • Xu, J.; Yu, T.; Zhao, G.; Wang, J. Enhancing Oxidation Ability of Graphitic Carbon Nitride Photocatalysts to Promote Lignin Cα–Cβ Bond Cleavage in Micellar Aqueous Media. Int. J. Biol. Macromol. 2023, 236, 124029. DOI: 10.1016/j.ijbiomac.2023.124029.
  • Xu, J.; Gong, T.; Zhang, X.; Liu, M.; Wang, J. Photocatalytic Lignin C–C Bonds Cleavage in Lignin Models via Fe-Doped Graphene Carbon Nitride in Micellar Aqueous Medium. Surf. Interfaces 2023, 41, 103210. DOI: 10.1016/j.surfin.2023.103210.
  • Yang, X.; Xu, S.; Li, Y. Enhancing Photocatalytic Cleavage of C–C Bonds in Lignin Model Substrates by Ternary Nanocomposite of g-C3N4/rGO/CdS Using rGO as Electronic Mediators. Sep. Purif. Technol. 2023, 323, 124411. DOI: 10.1016/j.seppur.2023.124411.
  • Dhar, P.; Teja, V.; Vinu, R. Sonophotocatalytic Degradation of Lignin: Production of Valuable Chemicals and Kinetic Analysis. J. Environ. Chem. Eng. 2020, 8, 104286. DOI: 10.1016/j.jece.2020.104286.
  • Adewuyi, Y. G. Sonochemistry in Environmental Remediation. 2. Heterogeneous Sonophotocatalytic Oxidation Processes for the Treatment of Pollutants in Water. Environ. Sci. Technol. 2005, 39, 8557–8570. DOI: 10.1021/es0509127.
  • Li, T.; Mo, J. Y.; Weekes, D. M.; Dettelbach, K. E.; Jansonius, R. P.; Sammis, G. M.; Berlinguette, C. P. Photoelectrochemical Decomposition of Lignin Model Compound on a BiVO(4) Photoanode. ChemSusChem 2020, 13, 3622–3626. DOI: 10.1002/cssc.202001134.
  • Ko, M.; Pham, L. T. M.; Sa, Y. J.; Woo, J.; Nguyen, T. V. T.; Kim, J. H.; Oh, D.; Sharma, P.; Ryu, J.; Shin, T. J.; et al. Unassisted Solar Lignin Valorisation Using a Compartmented Photo-Electro-Biochemical Cell. Nat. Commun. 2019, 10,5123. DOI: 10.1038/s41467-019-13022-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.