161
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Production of high-quality dissolving pulp from eucalyptus wood chips using deep eutectic solvent and elemental chlorine-free bleaching

ORCID Icon, , , , , & show all

References

  • Proskurina, S.; Junginger, M.; Heinimö, J.; Vakkilainen, E. Global Biomass Trade for Energy–Part 1: Statistical and Methodological Considerations. Biofuels. Bioprod. Bioref. 2019, 13, 358–370. DOI: 10.1002/bbb.1841.
  • Gregg, J. S.; Jürgens, J.; Happel, M. K.; Strøm-Andersen, N.; Tanner, A. N.; Bolwig, S.; Klitkou, A. Valorization of Bio-Residuals in the Food and Forestry Sectors in Support of a Circular Bioeconomy: A Review. J. Cleaner Prod. 2020, 267, 122093. DOI: 10.1016/j.jclepro.2020.122093.
  • Froschauer, C.; Hummel, M.; Iakovlev, M.; Roselli, A.; Schottenberger, H.; Sixta, H. Separation of Hemicellulose and cellulose from wood Pulp by Means of Ionic Liquid/Cosolvent Systems. Biomacromolecules 2013, 14, 1741–1750. DOI: 10.1021/bm400106h.
  • Therasme, O.; Volk, T. A.; Fortier, M. O.; Kim, Y.; Wood, C. D.; Ha, H.; Ali, A.; Brown, T.; Malmsheimer, R. Carbon Footprint of Biofuels Production from Forest Biomass Using Hot Water Extraction and Biochemical Conversion in the Northeast United States. Energy 2022, 241, 122853. DOI: 10.1016/j.energy.2021.122853.
  • Sixta, H. Handbook of Pulp; WILEY-VCH Verlag GmbH Co. KgaA: Weinheim, 2006; Vol. 1.
  • Kumar, H.; Christopher, L. P. Recent Trends and Developments in Dissolving Pulp Production and Application. Cellulose 2017, 246, 2347–2365.
  • Sixta, H.; Iakovlev, M.; Testova, L.; Roselli, A.; Hummel, M.; Borrega, M.; van Heiningen, A.; Froschauer, C.; Schottenberger, H. Novel Concepts of Dissolving Pulp Production. Cellulose 2013, 20, 1547–1561. DOI: 10.1007/s10570-013-9943-1.
  • Shen, X.; Lovrić, M. Structural Determinants of Global Trade in Graphic Paper and Pulp Products. For. Policy Econ. 2022, 134, 102629. DOI: 10.1016/j.forpol.2021.102629.
  • Kallio, A. M. I. Wood-Based Textile Fibre Market as Part of the Global Forest-Based Bioeconomy. For. Policy Econ. 2021, 123, 102364. DOI: 10.1016/j.forpol.2020.102364.
  • Janzon, R.; Puls, J.; Bohn, A.; Potthast, A.; Saake, B. Upgrading of Paper Grade Pulps to Dissolving Pulps by Nitren Extraction: Yields, Molecular and Supramolecular Structures of Nitren Extracted Pulps. Cellulose 2008, 15, 739–750. DOI: 10.1007/s10570-008-9224-6.
  • Köpcke, V.; Ibarra, D.; Larsson, P. T.; Ek, M. Optimization of Treatment Sequences for the Production of Dissolving Pulp from Birch Kraft Pulp. Nordic Pulp Paper Res. J. 2010, 2010, 31–38.
  • Arnoul-Jarriault, B.; Lachenal, D.; Chirat, C.; Heux, L. Upgrading Softwood Bleached Kraft Pulp to Dissolving Pulp by Cold Caustic Treatment and Acid-Hot Caustic Treatment. Ind. Crops Prod. 2015, 65, 565–571. DOI: 10.1016/j.indcrop.2014.09.051.
  • Magina, S.; Mendes, I. S.; Prates, A.; Evtuguin, D. V. Changes in Sulfite Liquor Composition While Re-Profiling Mill from Paper-Grade to Dissolving Pulp Production. J. Wood Chem. Technol. 2022, 42, 193–203. DOI: 10.1080/02773813.2022.2068603.
  • Sarkar, A. M.; Nayeem, J.; Rahaman, M. M.; Jahan, M. S. Dissolving Pulp from Non-Wood Plants by Prehydrolysis Potassium Hydroxide Process. Cellulose Chem. Technol. 2021, 55, 117–124. DOI: 10.35812/CelluloseChemTechnol.2021.55.12.
  • Vallejos, M. E.; Olmos, G. V.; Taleb, M. C.; Felissia, F. E.; Ehman, N. V.; Peresin, M. S.; Area, M. C.; Maximino, M. G. Dissolving Pulp from Eucalyptus Sawdust for Regenerated Cellulose Products. Cellulose 2022, 298, 4645–4659.
  • Ceccherini, S.; Ståhl, M.; Sawada, D.; Hummel, M.; Maloney, T. C. Effect of Enzymatic Depolymerization of Cellulose and Hemicelluloses on the Direct Dissolution of Prehydrolysis Kraft Dissolving Pulp. Biomacromolecules 2021, 2211, 4805–4813.
  • Dong, Y.; Ji, H.; Dong, C.; Zhu, W.; Long, Z.; Pang, Z. Preparation of High-Grade Dissolving Pulp from Radiata Pine. Ind. Crops Prod. 2020, 143, 111880. DOI: 10.1016/j.indcrop.2019.111880.
  • Shokri, S.; Hedjazi, S.; Lê, H. Q.; Abdulkhani, A.; Sixta, H. High-Purity Cellulose Production from Birch Wood by γ-Valerolactone/Water Fractionation and IONCELL-P Process. Carbohydr. Polym. 2022, 288, 119364. DOI: 10.1016/j.carbpol.2022.119364.
  • Onwukamike, K. N.; Grelier, S.; Grau, E.; Cramail, H.; Meier, M. A. Critical Review on Sustainable Homogeneous Cellulose Modification: Why Renewability Is Not Enough. ACS Sustainable Chem. Eng. 2018, 72, 1826–1840.
  • Dugoni, G. C.; Mezzetta, A.; Guazzelli, L.; Chiappe, C.; Ferro, M.; Mele, A. Purification of Kraft Cellulose under Mild Conditions Using Choline Acetate Based Deep Eutectic Solvents. Green Chem. 2020, 22, 8680–8691. DOI: 10.1039/D0GC03375H.
  • Arce, C.; Llano, T.; García, P.; Coz, A. Technical and Environmental Improvement of the Bleaching Sequence of Dissolving Pulp for Fibre Production. Cellulose 2020, 27, 4079–4090. DOI: 10.1007/s10570-020-03065-1.
  • Balkissoon, S.; Andrew, J.; Sithole, B. Dissolving Wood Pulp Production: A Review. Biomass Convers. Bioref. 2022, 13, 16607–16642. DOI: 10.1007/s13399-022-02442-z.
  • Yang, S.; Yang, B.; Duan, C.; Fuller, D. A.; Wang, X.; Chowdhury, S. P.; Stavik, J.; Zhang, H.; Ni, Y. Applications of Enzymatic Technologies to the Production of High-Quality Dissolving Pulp: A Review. Bioresour. Technol. 2019, 281, 440–448. DOI: 10.1016/j.biortech.2019.02.132.
  • Mendes, I. S.; Prates, A.; Evtuguin, D. V. Production of Rayon Fibres from Cellulosic Pulps: State of the Art and Current Developments. Carbohydr. Polym. 2021, 273, 118466. DOI: 10.1016/j.carbpol.2021.118466.
  • Gilan, K. M.; Hedjazi, S.; Lê, H. Q.; Abdolkhani, A.; Ceccherini, S.; Viljanen, M.; Sixta, H. Conversion of Bleached Soda Bagasse Paper-Grade Pulp to Dissolving-Grade Pulp Using Different Hemicelluloses Removing Post-Treatments with Emphasis on IONCELL-P Process. Holzforschung. 2022, 76, 473–483. DOI: 10.1515/hf-2021-0201.
  • Ngene, G. I.; Roux, J. C.; Lachenal, D. Influence of Hollander Beater Refining on Xylan Extraction from Hardwood Paper Pulp by Cold Caustic Extraction and Xylanase Treatment. BioResources 2021, 17, 908–921. DOI: 10.15376/biores.17.1.908-921.
  • Nagoor Gunny, A. A.; Arbain, D.; Mohamed Daud, M. Z.; Jamal, P. Synergistic Action of Deep Eutectic Solvents and Cellulases for Lignocellulosic Biomass Hydrolysis. Mater. Res. Innovations 2014, 18, S6-65–S6-67. DOI: 10.1179/1432891714Z.000000000933.
  • Majová, V.; Horanová, S.; Škulcová, A.; Šima, J.; Jablonský, M. Deep Eutectic Solvent Delignification: Impact of Initial Lignin. BioResources 2017, 12, 7301–7310. DOI: 10.15376/biores.12.4.7301-7310.
  • Chen, Y.; Zhang, L.; Yu, J.; Lu, Y.; Jiang, B.; Fan, Y.; Wang, Z. High-Purity Lignin Isolated from Poplar Wood Meal through Dissolving Treatment with Deep Eutectic Solvents. R Soc. Open Sci. 2019, 61, 181757.
  • Lim, W. L.; Gunny, A. A. N.; Kasim, F. H.; AlNashef, I. M.; Arbain, D. Alkaline Deep Eutectic Solvent: A Novel Green Solvent for Lignocellulose Pulping. Cellulose 2019, 26, 4085–4098. DOI: 10.1007/s10570-019-02346-8.
  • Rodriguez Rodriguez, N.; van den Bruinhorst, A.; Kollau, L. J.; Kroon, M. C.; Binnemans, K. Degradation of Deep-Eutectic Solvents Based on Choline Chloride and Carboxylic Acids. ACS Sustainable Chem. Eng. 2019, 7, 11521–11528. DOI: 10.1021/acssuschemeng.9b01378.
  • Cai, C.; Wang, Y.; Yu, W.; Wang, C.; Li, F.; Tan, Z. Temperature-Responsive Deep Eutectic Solvents as Green and Recyclable Media for the Efficient Extraction of Polysaccharides from Ganoderma lucidum. J. Cleaner Prod. 2020, 274, 123047. DOI: 10.1016/j.jclepro.2020.123047.
  • Scelsi, E.; Angelini, A.; Pastore, C. Deep Eutectic Solvents for the Valorisation of Lignocellulosic Biomasses towards Fine Chemicals. Biomass 2021, 1, 29–59. DOI: 10.3390/biomass1010003.
  • Tocco, D.; Carucci, C.; Monduzzi, M.; Salis, A.; Sanjust, E. Recent Developments in the Delignification and Exploitation of Grass Lignocellulosic Biomass. ACS Sustainable Chem. Eng. 2021, 9, 2412–2432. DOI: 10.1021/acssuschemeng.0c07266.
  • Bjelić, A.; Hočevar, B.; Grilc, M.; Novak, U.; Likozar, B. A Review of Sustainable Lignocellulose Biorefining Applying Natural Deep Eutectic Solvents DESs for Separations, Catalysis and Enzymatic Biotransformation Processes. Rev. Chem. Eng. 2022, 38, 243–272. DOI: 10.1515/revce-2019-0077.
  • Sirviö, J. A.; Visanko, M.; Liimatainen, H. Acidic Deep Eutectic Solvents as Hydrolytic Media for Cellulose Nanocrystal Production. Biomacromolecules 2016, 17, 3025–3032. DOI: 10.1021/acs.biomac.6b00910.
  • Jablonsky, M.; Majova, V.; Ondrigova, K.; Sima, J. Preparation and Characterization of Physicochemical Properties and Application of Novel Ternary Deep Eutectic Solvents. Cellulose 2019, 26, 3031–3045. DOI: 10.1007/s10570-019-02322-2.
  • Soares, B.; da Costa Lopes, A. M.; Silvestre, A. J.; Pinto, P. C. R.; Freire, C. S.; Coutinho, J. A. Wood Delignification with Aqueous Solutions of Deep Eutectic Solvents. Ind. Crops Prod. 2021, 160, 113128. DOI: 10.1016/j.indcrop.2020.113128.
  • Soleimanzadeh, H.; Bektashi, F. M.; Ahari, S. Z.; Salari, D.; Olad, A.; Ostadrahimi, A. Optimization of Cellulose Extraction Process from Sugar Beet Pulp and Preparation of Its Nanofibers with Choline Chloride–Lactic Acid Deep Eutectic Solvents. Biomass Conv. Bioref. 2023, 13, 14457–14469. DOI: 10.1007/s13399-023-04141-9.
  • Jeong, K. M.; Lee, M. S.; Nam, M. W.; Zhao, J.; Jin, Y.; Lee, D. K.; Kwon, S. W.; Jeong, J. H.; Lee, J. Tailoring and Recycling of Deep Eutectic Solvents as Sustainable and Efficient Extraction Media. J. Chromatogr. A 2015, 1424, 10–17. DOI: 10.1016/j.chroma.2015.10.083.
  • Kumar, A. K.; Parikh, B. S.; Pravakar, M. Natural Deep Eutectic Solvent Mediated Pretreatment of Rice Straw: Bioanalytical Characterization of Lignin Extract and Enzymatic Hydrolysis of Pretreated Biomass Residue. Environ. Sci. Pollut. Res. Int. 2016, 23, 9265–9275. DOI: 10.1007/s11356-015-4780-4.
  • Smink, D.; Kersten, S. R.; Schuur, B. Recovery of Lignin from Deep Eutectic Solvents by Liquid-Liquid Extraction. Sep. Purif. Technol. 2020, 235, 116127. DOI: 10.1016/j.seppur.2019.116127.
  • Yan, G.; Zhou, Y.; Zhao, L.; Wang, W.; Yang, Y.; Zhao, X.; Chen, Y.; Yao, X. Recycling of Deep Eutectic Solvent for Sustainable and Efficient Pretreatment of Corncob. Ind. Crops Prod. 2022, 183, 115005. DOI: 10.1016/j.indcrop.2022.115005.
  • Smith, E. L.; Abbott, A. P.; Ryder, K. S. Deep Eutectic Solvents DESs and Their Applications. Chem. Rev. 2014, 114, 11060–11082. DOI: 10.1021/cr300162p.
  • Pandey, Ashish, Dhingra, Divya, Pandey, Siddharth, Bhawna,. Hydrogen Bond Donor/Acceptor Cosolvent-Modified Choline Chloride-Based Deep Eutectic Solvents. J. Phys. Chem. B 2017, 121, 4202–4212. DOI: 10.1021/acs.jpcb.7b01724.
  • Zhang, Q.; Vigier, K. D. O.; Royer, S.; Jérôme, F. Deep Eutectic Solvents: Syntheses, Properties and Applications. Chem. Soc. Rev. 2012, 41, 7108–7146. DOI: 10.1039/c2cs35178a.
  • Chen, Z.; Reznicek, W. D.; Wan, C. Deep Eutectic Solvent Pretreatment Enabling Full Utilization of Switchgrass. Bioresour. Technol. 2018, 263, 40–48. DOI: 10.1016/j.biortech.2018.04.058.
  • Smink, D.; Juan, A.; Schuur, B.; Kersten, S. R. Understanding the Role of Choline Chloride in Deep Eutectic Solvents Used for Biomass Delignification. Ind. Eng. Chem. Res. 2019, 58, 16348–16357. DOI: 10.1021/acs.iecr.9b03588.
  • Chen, Z.; Ragauskas, A.; Wan, C. Lignin Extraction and Upgrading Using Deep Eutectic Solvents. Ind. Crops Prod. 2020, 147, 112241. DOI: 10.1016/j.indcrop.2020.112241.
  • García, G.; Aparicio, S.; Ullah, R.; Atilhan, M. Deep Eutectic Solvents: Physicochemical Properties and Gas Separation Applications. Energy Fuels 2015, 29, 2616–2644. DOI: 10.1021/ef5028873.
  • Zhang, L.; Chu, J.; Gou, S.; Chen, Y.; Fan, Y.; Wang, Z. Direct Fractionation of Wood Chips by Deep Eutectic Solvent Facilitated Pulping Technology and Application for Enzyme Hydrolysis. Ind. Crops Prod. 2021, 171, 113927. DOI: 10.1016/j.indcrop.2021.113927.
  • Xu, G. C.; Ding, J. C.; Han, R. Z.; Dong, J. J.; Ni, Y. Enhancing Cellulose Accessibility of Corn Stover by Deep Eutectic Solvent Pretreatment for Butanol Fermentation. Bioresour. Technol. 2016, 203, 364–369. DOI: 10.1016/j.biortech.2015.11.002.
  • Tian, D.; Chandra, R. P.; Lee, J. S.; Lu, C.; Saddler, J. N. A Comparison of Various Lignin-Extraction Methods to Enhance the Accessibility and Ease of Enzymatic Hydrolysis of the Cellulosic Component of Steam-Pretreated Poplar. Biotechnol. Biofuels 2017, 10, 157. DOI: 10.1186/s13068-017-0846-5.
  • Sirviö, J. A.; Hyypiö, K.; Asaadi, S.; Junka, K.; Liimatainen, H. High-Strength Cellulose Nanofibers Produced via Swelling Pretreatment Based on a Choline Chloride–Imidazole Deep Eutectic Solvent. Green Chem. 2020, 22, 1763–1775. DOI: 10.1039/C9GC04119B.
  • Guo, Z.; Zhang, Q.; You, T.; Zhang, X.; Xu, F.; Wu, Y. Short-Time Deep Eutectic Solvent Pretreatment for Enhanced Enzymatic Saccharification and Lignin Valorization. Green Chem. 2019, 21, 3099–3108. DOI: 10.1039/C9GC00704K.
  • Pérez, A. D.; Fiskari, J.; Schuur, B. Delignification of Low-Energy Mechanical Pulp Asplund Fibers in a Deep Eutectic Solvent System of Choline Chloride and Lactic Acid. Front. Chem. 2021, 9, 688291. DOI: 10.3389/fchem.2021.688291.
  • Smink, D.; Kersten, S. R.; Schuur, B. Process Development for Biomass Delignification Using Deep Eutectic Solvents. Conceptual Design Supported by Experiments. Chem. Eng. Res. Des. 2020, 164, 86–101. DOI: 10.1016/j.cherd.2020.09.018.
  • Monot, C.; Chirat, C.; Evangelista, B.; Brochier-Salon, M. C. Characterisation of Lignin and Lignin-Carbohydrate Complexes (LCCs) in Prehydrolysed Wood Chips. Holzforschung 2017, 71, 199–205. DOI: 10.1515/hf-2016-0034.
  • Janson, J. Calculation of the Polysaccharide Composition of Wood and Pulp. Pap. Puu 1970, 52, 323–329.
  • Xu, H.; Peng, J.; Kong, Y.; Liu, Y.; Su, Z.; Li, B.; Song, X.; Liu, S.; Tian, W. Key Process Parameters for Deep Eutectic Solvents Pretreatment of Lignocellulosic Biomass Materials: A Review. Bioresour. Technol. 2020, 310, 123416. DOI: 10.1016/j.biortech.2020.123416.
  • Deb, S.; Labafzadeh, S. R.; Liimatainen, U.; Parviainen, A.; Hauru, L. K.; Azhar, S.; Lawoko, M.; Kulomaa, T.; Kakko, T.; Fiskari, J.; et al. Application of Mild Autohydrolysis to Facilitate the Dissolution of Wood Chips in Direct-Dissolution Solvents. Green Chem. 2016, 18, 3286–3294. DOI: 10.1039/C6GC00183A.
  • Geffert, A.; Geffertova, J.; Seman, B. The Problems in Delignification of Dry Wood by Kraft Process. Key Eng. Mater. 2016, 688, 3–9. DOI: 10.4028/www.scientific.net/KEM.688.3.
  • Malkov, S.; Tikka, P.; Kuzmin, V.; Baltakhinov, V. Efficiency of Chip Presteaming-Result of Heating and Air Escape Processes. Nordic Pulp Pap. Res. J. 2002, 17, 420–426. DOI: 10.3183/npprj-2002-17-04-p420-426.
  • Cullis, I. F.; Saddler, J. N.; Mansfield, S. D. Effect of Initial Moisture Content and Chip Size on the Bioconversion Efficiency of Softwood Lignocellulosics. Biotechnol. Bioeng. 2004, 85, 413–421. DOI: 10.1002/bit.10905.
  • Sixta, H.; Promberger, A.; Koch, G.; Gradinger, C.; Messner, K. Influence of Beech Wood Quality on Bisulfite Dissolving Pulp Manufacture. Part 1: Influence of Log Storage on Pulping and Bleaching. Holzforschung 2004, 58, 14–21. DOI: 10.1515/HF.2004.003.
  • Majová, V.; Jablonský, M.; Lelovský, M. Delignification of Unbleached Pulp by Ternary Deep Eutectic Solvents. Green Process. Synth. 2021, 10, 666–676. DOI: 10.1515/gps-2021-0066.
  • Timmerfors, J. G.; Salehi, H.; Larsson, S. H.; Sjölund, T.; Jönsson, L. J. The Impact of Using Different Wood Qualities and Wood Species on Chips Produced Using a Novel Type of Pilot Drum Chipper. Nordic Pulp Pap. Res. J. 2021, 362, 214–226.
  • Hammond, O. S.; Bowron, D. T.; Edler, K. J. The Effect of Water upon Deep Eutectic Solvent Nanostructure: An Unusual Transition from Ionic Mixture to Aqueous Solution. Angew. Chem. Int. Ed. Engl. 2017, 56, 9782–9785. DOI: 10.1002/anie.201702486.
  • Loow, Y. L.; New, E. K.; Yang, G. H.; Ang, L. Y.; Foo, L. Y. W.; Wu, T. Y. Potential Use of Deep Eutectic Solvents to Facilitate Lignocellulosic Biomass Utilization and Conversion. Cellulose 2017, 24, 3591–3618. DOI: 10.1007/s10570-017-1358-y.
  • El Achkar, T.; Greige-Gerges, H.; Fourmentin, S. Basics and Properties of Deep Eutectic Solvents: A Review. Environ. Chem. Lett. 2021, 19, 3397–3408. DOI: 10.1007/s10311-021-01225-8.
  • New, E. K.; Wu, T. Y.; Tien Loong Lee, C. B.; Poon, Z. Y.; Loow, Y.-L.; Wei Foo, L. Y.; Procentese, A.; Siow, L. F.; Teoh, W. H.; Nik Daud, N. N.; et al. Potential Use of Pure and Diluted Choline Chloride-Based Deep Eutectic Solvent in Delignification of Oil Palm Fronds. Process Saf. Environ. Prot. 2019, 123, 190–198. DOI: 10.1016/j.psep.2018.11.015.
  • Soares, B.; Tavares, D. J.; Amaral, J. L.; Silvestre, A. J.; Freire, C. S.; Coutinho, J. A. Enhanced Solubility of Lignin Monomeric Model Compounds and Technical Lignins in Aqueous Solutions of Deep Eutectic Solvents. ACS Sustainable Chem. Eng. 2017, 5, 4056–4065. DOI: 10.1021/acssuschemeng.7b00053.
  • Timmerfors, J. G.; Gandla, M. L.; Sjölund, T.; Jönsson, L. J. Evaluation of Chipping and Impregnation of Scots Pine Heartwood with Sulfite Cooking Liquor. SN Appl. Sci. 2020, 212, 1–14.
  • Lee, K. M.; Hong, J. Y.; Tey, W. Y. Combination of Ultrasonication and Deep Eutectic Solvent in Pretreatment of Lignocellulosic Biomass for Enhanced Enzymatic Saccharification. Cellulose 2021, 28, 1513–1526. DOI: 10.1007/s10570-020-03598-5.
  • Isci, A.; Kaltschmitt, M. Recovery and Recycling of Deep Eutectic Solvents in Biomass Conversions: A Review. Biomass Conv. Bioref. 2021, 12, 197–226. DOI: 10.1007/s13399-021-01860-9.
  • Chen, Y.; Shen, K.; He, Z.; Wu, T.; Huang, C.; Liang, L.; Fang, G. Deep Eutectic Solvent Recycling to Prepare High Purity Dissolving Pulp. Cellulose 2021, 28, 11503–11517. DOI: 10.1007/s10570-021-04188-9.
  • Liang, X.; Zhang, J.; Huang, Z.; Guo, Y. Sustainable Recovery and Recycling of Natural Deep Eutectic Solvent for Biomass Fractionation via Industrial Membrane-Based Technique. Ind. Crops Prod. 2023, 194, 116351. DOI: 10.1016/j.indcrop.2023.116351.
  • Sui, M.; Feng, S.; Yu, J.; Chen, B.; Li, Z.; Shao, P. Removal and Recovery of Deep Eutectic Solvent with Membrane-Based Methodology: A Promising Strategy to Enhance Extraction and Purification of Dendrobium Officinale Flavonoids. Ind. Crops Prod. 2023, 206, 117638. DOI: 10.1016/j.indcrop.2023.117638.
  • Franklin, E. C. Yield and Properties of Pulp from Eucalypt Wood Grown in Florida. Tappi J. 1977, 606, 65–67.
  • Chen, Y.; Yan, Z.; Liang, L.; Ran, M.; Wu, T.; Wang, B.; Zou, X.; Zhao, M.; Fang, G.; Shen, K. Comparative Evaluation of Organic Acid Pretreatment of Eucalyptus for Kraft Dissolving Pulp Production. Materials 2020, 13, 361. DOI: 10.3390/ma13020361.
  • Ibarra, D.; Köpcke, V.; Larsson, P. T.; Jääskeläinen, A. S.; Ek, M. Combination of Alkaline and Enzymatic Treatments as a Process for Upgrading Sisal Paper-Grade Pulp to Dissolving-Grade Pulp. Bioresour. Technol. 2010, 101, 7416–7423. DOI: 10.1016/j.biortech.2010.04.050.
  • Vera-Loor, A.; Rigou, P.; Marlin, N.; Mortha, G.; Dufresne, A. Oxidation Treatments to Convert Paper-Grade Eucalyptus Kraft Pulp into Microfibrillated Cellulose. Carbohydr. Polym. 2022, 296, 119946. DOI: 10.1016/j.carbpol.2022.119946.
  • Andrade, M. F.; Colodette, J. L. Dissolving Pulp Production from Sugar Cane Bagasse. Ind. Crops Prod. 2014, 52, 58–64. DOI: 10.1016/j.indcrop.2013.09.041.
  • Carvalho, M. G. V.; Carvalho, N. M.; Loureiro, P. E. Performance of a Final Hydrogen Peroxide Stage in the ECF Bleaching of Eucalypt D. Tappi J. 2008, 7, 8–13. DOI: 10.32964/TJ7.8.8.
  • Perrin, J.; Lachenal, D.; Chirat, C. Brightness Stability of Eucalyptus-Dissolving Pulps: Effect of the Bleaching Sequence. Holzforschung 2017, 71, 625–631. DOI: 10.1515/hf-2016-0208.
  • Colodette, J. L.; Gomes, C. M.; Rabelo, M.; Eiras, K. M.; Viçosa, M. G. Progress in Eucalyptus Kraft Pulp Bleaching. In 2nd International Colloquium on Eucalyptus Pulp 2ICEPssssss; Concepcion-Chile, 2005;pp 1–18.
  • McDonough, T. Oxygen Delignification. In Pulp Bleaching: Principles and Practice; Dence, C. W., Reeve, D. W., Eds., Tappi Press: Atlanta, GA, 1996, pp 215–259.
  • Abad, S.; Saake, B.; Puls, J.; Parajó, J. C. Totally Chlorine Free Bleaching of Eucalyptus Globulus Dissolving Pulps Delignified with Peroxyformic Acid and Formic Acid. Holzforschung 2002, 56, 60–66. DOI: 10.1515/HF.2002.010.
  • Dapía, S.; Sixta, H.; Borgards, A.; Harms, H.; Parajó, J. C. TCF Bleaching of Hardwood Pulps Obtained in Organic Acid Media: Production of Viscose-Grade Pulps. Holz Roh. Werkst. 2003, 61, 363–368. DOI: 10.1007/s00107-003-0404-7.
  • Gierer, J. Formation and Involvement of Superoxide O2-/HO2 and Hydroxyl OH· Radicals in TCF Bleaching Processes: A Review. Holzforschung 1997, 51, 34–46. DOI: 10.1515/hfsg.1997.51.1.34.
  • Duan, C.; Li, J.; Ma, X.; Chen, C.; Liu, Y.; Stavik, J.; Ni, Y. Comparison of Acid Sulfite as-and Prehydrolysis Kraft PHK-Based Dissolving Pulps. Cellulose 2015, 22, 4017–4026. DOI: 10.1007/s10570-015-0781-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.