395
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Mechanical and morphological bond line properties of silver birch wood pretreated by aqueous extraction

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • McBain, J. W.; Hopkins, D. G. On Adhesives and Adhesive Action. J. Phys. Chem. 1925, 29, 188–204. DOI: 10.1021/j150248a008.
  • Browne, F. L.; Brouse, D. Nature of Adhesion between Glue and Wood: A Criticism of the Hypothesis That the Strength of Glued Wood Joints is Due Chiefly to Mechanical Adhesion. Ind. Eng. Chem. 1929, 21, 80–84. DOI: 10.1021/ie50229a023.
  • Marian, J. E.; Stumbo, D. A. Adhesion in Wood Part. II. Physico-Chemical Surface Phenomena and the Thermodynamic Approach to Adhesion. Holzforschung 1962, 16, 168–180. DOI: 10.1515/hfsg.1962.16.6.168.
  • Bikerman, J. J. The Science of Adhesive Joints; Elsevier, London, 1968. DOI: 10.1016/C2013-0-12556-1.
  • Collett, B. M. A Review of Surface and Interfacial Adhesion in Wood Science and Related Fields. Wood Sci. Technol. 1972, 6, 1–42. DOI: 10.1007/BF00351806.
  • Packham, D. E. The Mechanical Theory of Adhesion—Changing Perceptions 1925-1991. J Adhesion 1992, 39, 137–144. DOI: 10.1080/00218469208026545.
  • Packham, D. E.; Johnston, C. Mechanical Adhesion: Were McBain and Hopkins Right? An Empirical Study. Int. J. Adhes. Adhes. 1994, 14, 131–135. DOI: 10.1016/0143-7496(94)90008-6.
  • Chen, C. M. Effect of Extractive Removal on Adhesion and Wettability of Some Tropical Woods. For. Prod. J. 1970, 20, 36–41.
  • Hse, C.; Kuo, M. Influence of Extractives on Wood Gluing and Finishing: A Review. For. Prod. J. 1988, 38, 52–56.
  • Künninger, T.; Fischer, A.; Bordeanu, N. C.; Richter, K. Water Soluble Larch Extractive: Impact on 1P-PUR Wood Bonds. In Wood Structure and Properties ‘06: Proceedings of Abstracts of the 5th International Symposium; Kurjatko, S., Kúdela, J., & Lagaňa, R., Eds.; Arbora Publishers: Zvolen, Slovakia, 2006, pp 71–76.
  • Bockel, S.; Mayer, I.; Konnerth, J.; Harling, S.; Niemz, P.; Swaboda, C.; Beyer, M.; Bieri, N.; Weiland, G.; Pichelin, F. The Role of Wood Extractives in Structural Hardwood Bonding and Their Influence on Different Adhesive Systems. Int. J. Adhes. Adhes. 2019, 91, 43–53. DOI: 10.1016/j.ijadhadh.2019.03.001.
  • Brockerhoff, E. G.; Liebhold, A. M. Ecology of Forest Insect Invasions. Biol. Invasions 2017, 19, 3141–3159. DOI: 10.1007/s10530-017-1514-1.
  • Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest Disturbances under Climate Change. Nat. Clim. Chang. 2017, 7, 395–402. DOI: 10.1038/nclimate3303.
  • Lindner, M.; Fitzgerald, J. B.; Zimmermann, N. E.; Reyer, C.; Delzon, S.; Van Der Maaten, E.; Schelhaas, M.-J.; Lasch, P.; Eggers, J.; Van Der Maaten-Theunissen, M.; et al. Climate Change and European Forests: What Do We Know, What Are the Uncertainties, and What Are the Implications for Forest Management? J. Environ. Manage. 2014, 146, 69–83. DOI: 10.1016/j.jenvman.2014.07.030.
  • Oehmichen, K.; Klatt, S.; Gerber, K. The Alternative WEHAM Scenarios: Wood Preference, Conservation Preference, and Trend Update - Scenario Development, Results, and Analysis (Die Alternativen WEHAM-Szenarien: Holzpräferenz, Naturschutzpräferenz Und Trendfortschreibung - Szenarienentwicklung, Ergebnisse Und Analyse); Johann Heinrich von Thünen-Institut: Germany, 2018.
  • Bockel, S. Structural Bonding of European Beech Wood (Fagus Sylvatica L.) with Polyurethane Adhesives – A Study Investigating Various Aspects of Wood-Adhesive Interactions with a Focus on Wood E., xtractives. Dissertation, Universität für Bodenkultur Wien, Vienna, Austria, 2020.
  • Wang, Y.-S. Influence of Extractives on Bonding Properties of White Oak. Dissertation, Iowa State University, Ames, 1992. p 6385210. DOI: 10.31274/rtd-180813-9568.
  • Knorz, M. Investigation of Structurally Bonded Ash (Fraxinus Excelsior L.) as Influenced by Adhesive Type and Moisture. Dissertation, Technische Universität München, München, 2015.
  • Konnerth, J.; Kluge, M.; Schweizer, G.; Miljković, M.; Gindl-Altmutter, W. Survey of Selected Adhesive Bonding Properties of Nine European Softwood and Hardwood Species. Eur. J. Wood Prod 2016, 74, 809–819. DOI: 10.1007/s00107-016-1087-1.
  • Jeitler, G.; Augustin, M. Is Birch the better Beech? Grading, processing and mechanical properties of birch Glulam and birch CLT (Ist Birke die bessere Buche? Mechanische Eigenschaften und Referenzprojekte aus BIRKE|BSH&BSP). In Tagungsband Internationales Holzbau-Forum (IHF 2016); Garmisch, 2016.
  • Schlotzhauer, P.; Nelis, P. A.; Bollmus, S.; Gellerich, A.; Militz, H.; Seim, W. Effect of Size and Geometry on Strength Values and MOE of Selected Hardwood Species. Wood Mater. Sci. Eng. 2017, 12, 149–157. DOI: 10.1080/17480272.2015.1073175.
  • Boruszewski, P. J.; Borysiuk, P.; Mamiński, M. Ł.; Grześkiewicz, M. Gluability of Thermally Modified Beech (Fagus Silvatica L.) and Birch (Betula Pubescens Ehrh.) Wood. Wood Mater. Sci. Eng. 2011, 6, 185–189. DOI: 10.1080/17480272.2011.598239.
  • Morin-Bernard, A.; Blanchet, P.; Dagenais, C.; Achim, A. Use of Northern Hardwoods in Glued-Laminated Timber: A Study of Bondline Shear Strength and Resistance to Moisture. Eur. J. Wood Prod. 2020, 78, 891–903. DOI: 10.1007/s00107-020-01572-3.
  • Hass, P.; Wittel, F. K.; Mendoza, M.; Herrmann, H. J.; Niemz, P. Adhesive Penetration in Beech Wood: Experiments. Wood Sci. Technol. 2012, 46, 243–256. DOI: 10.1007/s00226-011-0410-6.
  • Ching, D. J.; Kamke, F. A.; Bay, B. K. Methodology for Comparing Wood Adhesive Bond Load Transfer Using Digital Volume Correlation. Wood Sci. Technol. 2018, 52, 1569–1587. DOI: 10.1007/s00226-018-1048-4.
  • Jakes, J. E.; Frihart, C. R.; Hunt, C. G.; Yelle, D. J.; Plaza, N. Z.; Lorenz, L.; Grigsby, W.; Ching, D. J.; Kamke, F.; Gleber, S.-C.; et al. X-Ray Methods to Observe and Quantify Adhesive Penetration into Wood. J. Mater. Sci. 2019, 54, 705–718. DOI: 10.1007/s10853-018-2783-5.
  • Sernek, M.; Resnik, J.; Kamke, F. A. Penetration of Liquid Urea-Formaldehyde Adhesive into Beech Wood. Wood Fiber Sci. 1999, 31, 41–48.
  • Bastani, A.; Adamopoulos, S.; Koddenberg, T.; Militz, H. Study of Adhesive Bondlines in Modified Wood with Fluorescence Microscopy and X-Ray Micro-Computed Tomography. Int. J. Adhes. Adhes. 2016, 68, 351–358. DOI: 10.1016/j.ijadhadh.2016.04.006.
  • Pittman, C. U.; Kim, M. G.; Nicholas, D. D.; Wang, L.; Kabir, F. R. A.; Schultz, T. P.; INGram, L. L. Wood Enhancement Treatments I. Impregnation of Southern Yellow Pine with Melamine-Formaldehyde and Melamine-Ammeline-Formaldehyde Resins. J. Wood Chem. Technol. 1994, 14, 577–603. DOI: 10.1080/02773819408003114.
  • Qin, Y.; Dong, Y.; Li, J. Effect of Modification with Melamine–Urea–Formaldehyde Resin on the Properties of Eucalyptus and Poplar. J. Wood Chem. Technol. 2019, 39, 360–371. DOI: 10.1080/02773813.2019.1636821.
  • Konnerth, J.; Harper, D.; Lee, S.-H.; Rials, T. G.; Gindl, W. Adhesive Penetration of Wood Cell Walls Investigated by Scanning Thermal Microscopy (SThM). Holzforschung 2008, 62, 91–98. DOI: 10.1515/HF.2008.014.
  • Casdorff, K.; Kläusler, O.; Gabriel, J.; Amen, C.; Lehringer, C.; Burgert, I.; Keplinger, T. About the Influence of a Water-Based Priming System on the Interactions between Wood and One-Component Polyurethane Adhesive Studied by Atomic Force Microscopy and Confocal Raman Spectroscopy Imaging. Int. J. Adhes. Adhes. 2018, 80, 52–59. DOI: 10.1016/j.ijadhadh.2017.10.001.
  • Jakes, J. E.; Hunt, C. G.; Yelle, D. J.; Lorenz, L.; Hirth, K.; Gleber, S.-C.; Vogt, S.; Grigsby, W.; Frihart, C. R. Synchrotron-Based X-Ray Fluorescence Microscopy in Conjunction with Nanoindentation to Study Molecular-Scale Interactions of Phenol–Formaldehyde in Wood Cell Walls. ACS Appl. Mater. Interfaces 2015, 7, 6584–6589. DOI: 10.1021/am5087598.
  • Gindl, W.; Schöberl, T.; Jeronimidis, G. The Interphase in Phenol–Formaldehyde and Polymeric Methylene Di-Phenyl-Di-Isocyanate Glue Lines in Wood. Int. J. Adhes. Adhes. 2004, 24, 279–286. DOI: 10.1016/j.ijadhadh.2003.10.002.
  • Konnerth, J.; Gindl, W. Mechanical Characterisation of Wood-Adhesive Interphase Cell Walls by Nanoindentation. Holzforschung 2006, 60, 429–433. DOI: 10.1515/HF.2006.067.
  • Konnerth, J.; Valla, A.; Gindl, W. Nanoindentation Mapping of a Wood-Adhesive Bond. Appl. Phys. A 2007, 88, 371–375. DOI: 10.1007/s00339-007-3976-y.
  • Stöckel, F.; Konnerth, J.; Moser, J.; Kantner, W.; Gindl-Altmutter, W. Micromechanical Properties of the Interphase in pMDI and UF Bond Lines. Wood Sci. Technol. 2012, 46, 611–620. DOI: 10.1007/s00226-011-0432-0.
  • Yan, Y.; Ze-Hui, J.; Frihart, C.; Jakes, J. Mechanical Characterization of Wood- Adhesive Interphase with an Improved Nanoindentation Technique. In Proceedings of the 55th International Convention of Society of Wood Science and Technology August 27-31; Beijing, China, 2012.
  • Rindler, A.; Hansmann, C.; Konnerth, J. The Effect of Moisture on the mechanical response of Wood, Adhesive and Their Interphase by Means of Nanoindentation. Wood Sci. Technol. 2019, 53, 729–746. DOI: 10.1007/s00226-019-01100-4.
  • Müller, U.; Veigel, S.; Follrich, J.; Gabriel, J.; Gindl, W. Performance of One Component Polyurethane in Comparison to Other Wood Adhesives. In Forest Products Society 2010. Conference Proceedings of the International Conference on Wood Adhesives 2009; Frihart, C. R., Hunt, C. G., & Moon, R. J., Eds. Forest Products Society: Lake Tahoe, Nevada, USA, 2009; pp 196–202
  • Serrano, E.; Enquist, B. Contact-Free Measurement and Non-Linear Finite Element Analyses of Strain Distribution along Wood Adhesive Bonds. Holzforschung 2005, 59, 641–646. DOI: 10.1515/HF.2005.103.
  • Özparpucu, M.; Wolfrum, T.; Windeisen-Holzhauser, E.; Knorz, M.; Richter, K. Combined FTIR Spectroscopy and Rheology for Measuring Melamine Urea Formaldehyde (MUF) Adhesive Curing as Influenced by Different Wood Extracts. Eur. J. Wood Prod. 2020, 78, 85–91. DOI: 10.1007/s00107-019-01481-0.
  • Özparpucu, M.; Sánchez-Ferrer, A.; Schuh, M.; Wilhelm, B.; Sarkar, R.; Reif, B.; Windeisen-Holzhauser, E.; Richter, K. Acidic Wood Extractives Accelerate the Curing Process of Emulsion Polymer Isocyanate Adhesives. J. Appl. Polym. Sci. 2022, 139, 52189. DOI: 10.1002/app.52189.
  • Özparpucu, M.; Windeisen-Holzhauser, E.; Wegener, G.; Richter, K. A New Analytical Approach to Investigate the Influence of Wood Extracts on the Curing Properties of Phenol-Resorcinol–Formaldehyde (PRF) Adhesives. Wood Sci. Technol. 2022, 56, 349–365. DOI: 10.1007/s00226-022-01364-3.
  • Engelhardt, M.; Böger, T.; Gigl, M.; Meng, C.; Soprunyuk, V.; Schranz, W.; Richter, K.; Sánchez-Ferrer, A. Interactions of Hydrophilic Birch Wood (Betula Pendula Roth) Extractives with Adhesives for Load-Bearing Timber Structures. Int. J. Adhes. Adhes. 2023, 125, 103447. DOI: 10.1016/j.ijadhadh.2023.103447.
  • Türmerleim GmbH. Kauramin® Resin 683 Liquid with Kauramin® Hardener 688 Liquid in Wood Construction, Technical Data Sheet (German); Türmerleim GmbH: Ludwigshafen, 2008.
  • Henkel & Cie.AG. LOCTITE® HB S309 PURBOND, Technical Data Sheet (German); Henkel & Cie. AG Sempach Station: Switzerland, 2015.
  • Sánchez-Ferrer, A.; Engelhardt, M.; Richter, K. Anisotropic Wood–Water Interactions Determined by Gravimetric Vapor Sorption Experiments. Cellulose 2023, 30, 3869–3885. DOI: 10.1007/s10570-023-05093-z.
  • EN 302-1. 2013 Adhesives for Load-Bearing Timber Structures - Test Methods - Part 1: Determination of Longitudinal Tensile Shear Strength; European Committee for Standardization (CEN), Series Ed.; CEN, 2019.
  • Hass, P.; Müller, C.; Clauss, S.; Niemz, P. Influence of Growth Ring Angle, Adhesive System and Viscosity on the Shear Strength of Adhesive Bonds. Wood Material Science & Engineering 2009, 4, 140–146. DOI: 10.1080/17480270903421529.
  • Ross, C. T. F.; Bird, J.; Little, A. Mechanics of Solids, 3rd ed.; Routledge, Taylor & Francis Group: London , New York, 2022.
  • Lachowicz, H.; Wróblewska, H.; Sajdak, M.; Komorowicz, M.; Wojtan, R. The Chemical Composition of Silver Birch (Betula Pendula Roth.) Wood in Poland Depending on Forest Stand Location and Forest Habitat Type. Cellulose 2019, 26, 3047–3067. DOI: 10.1007/s10570-019-02306-2.
  • Winkler, C.; Raskop, S.; Sydow, S.; Engelhardt, M. Wood Adhesives: Factors Influencing the Determination of Mechanical Properties (Holzklebstoffe: Einflussfaktoren Auf Die Ermittlung Mechanischer Kennwerte). In Tagungsband Des 20; André Wagenführ, Ed.; Holztechnologischen Kolloquiums Dresden: Dresden, 2022.
  • Sridach, W.; Jonjankiat, S.; Wittaya, T. Effect of Citric Acid, PVOH, and Starch Ratio on the Properties of Cross-Linked Poly(Vinyl Alcohol)/Starch Adhesives. J. Adhes. Sci. Technol. 2013, 27, 1727–1738. DOI: 10.1080/01694243.2012.753394.
  • Wang, X.; Deng, Y.; Li, Y.; Kjoller, K.; Roy, A.; Wang, S. In Situ Identification of the Molecular-Scale Interactions of Phenol-Formaldehyde Resin and Wood Cell Walls Using Infrared Nanospectroscopy. RSC Adv. 2016, 6, 76318–76324. DOI: 10.1039/C6RA13159J.
  • Emmerich, L.; Bollmus, S.; Militz, H. Wood Modification with DMDHEU (1.3-Dimethylol-4.5-Dihydroxyethyleneurea) – State of the Art, Recent Research Activities and Future Perspectives. Wood Mater. Sci. Eng. 2019, 14, 3–18. DOI: 10.1080/17480272.2017.1417907.
  • Vázquez, G.; Freire, S.; Rodríguez-Bona, C.; González, J.; Antorrena, G. Structures, and Reactivities with Formaldehyde, of Some Acetosolv Pine Lignins. J. Wood Chem. Technol. 1999, 19, 357–378. DOI: 10.1080/02773819909349617.
  • Conner, A. H.; River, B. H.; Lorenz, L. F. Carbohydrate Modfied Phenol-Formaldehyde Resins. J. Wood Chem. Technol. 1986, 6, 591–613. DOI: 10.1080/02773818608085246.
  • Immergut, E. H.; Mark, H. F. Plasticization and Plasticizer Processes. In Advances in Chemistry; Platzer, N. A. J., Ed. American Chemical Society: Washington, D.C., 1965; Vol. 48. DOI: 10.1021/ba-1965-0048.
  • Konnerth, J.; Gindl, W.; Müller, U. Elastic Properties of Adhesive polymers. I. Polymer Films by Means of Electronic Speckle Pattern Interferometry. J Appl. Polym. Sci. 2007, 103, 3936–3939. DOI: 10.1002/app.24434.
  • Quispe Rodríguez, R.; de Paiva, W. P.; Sollero, P.; Bertoni Rodrigues, M. R.; de AlbuqueRQue, É. L. Failure Criteria for Adhesively Bonded Joints. International Journal of Adhesion and Adhesives 2012, 37, 26–36. DOI: 10.1016/j.ijadhadh.2012.01.009.
  • West, H.; Banks, W. B. Topochemistry of the Wood-Isccyanate Reaction an Analysis of Reaction Profiles. J. Wood Chem. Technol. 1986, 6, 411–425. DOI: 10.1080/02773818608085235.
  • Ionescu, M. Chemistry and Technology of Polyols for Polyurethanes, 2nd ed.; Smithers Rapra: Shawbury, 2016.
  • Kessner, D.; Chambers, M.; Burke, R.; Agus, D.; Mallick, P. ProteoWizard: Open Source Software for Rapid Proteomics Tools Development. Bioinformatics 2008, 24, 2534–2536. DOI: 10.1093/bioinformatics/btn323.
  • Tautenhahn, R.; Böttcher, C.; Neumann, S. Highly Sensitive Feature Detection for High Resolution LC/MS. BMC Bioinf. 2008, 9, 504. DOI: 10.1186/1471-2105-9-504.
  • Benton, H. P.; Want, E. J.; Ebbels, T. M. D. Correction of Mass Calibration Gaps in Liquid Chromatography–Mass Spectrometry Metabolomics Data. Bioinformatics 2010, 26, 2488–2489. DOI: 10.1093/bioinformatics/btq441.
  • Smith, C. A.; Want, E. J.; O'Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Anal. Chem. 2006, 78, 779–787. DOI: 10.1021/ac051437y.
  • Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGhEynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-Independent MS/MS Deconvolution for Comprehensive Metabolome Analysis. Nat. Methods 2015, 12, 523–526. DOI: 10.1038/nmeth.3393.
  • Dührkop, K.; Nothias, L.-F.; Fleischauer, M.; Reher, R.; Ludwig, M.; Hoffmann, M. A.; Petras, D.; Gerwick, W. H.; Rousu, J.; Dorrestein, P. C.; BöcKEr, S. Systematic Classification of Unknown Metabolites Using High-Resolution Fragmentation Mass Spectra. Nat. Biotechnol. 2021, 39, 462–471. DOI: 10.1038/s41587-020-0740-8.
  • Keller, B. O.; Sui, J.; Young, A. B.; Whittal, R. M. Interferences and Contaminants Encountered in Modern Mass Spectrometry. Anal. Chim. Acta. 2008, 627, 71–81. DOI: 10.1016/j.aca.2008.04.043.
  • Djoumbou Feunang, Y.; Eisner, R.; Knox, C.; Chepelev, L.; Hastings, J.; Owen, G.; Fahy, E.; Steinbeck, C.; Subramanian, S.; Bolton, E.; et al. ClassyFire: Automated Chemical Classification with a Comprehensive, Computable Taxonomy. J. Cheminform 2016, 8, 61. DOI: 10.1186/s13321-016-0174-y.
  • VDI. VDI 2626 Part 1:2019 Optical Measuring Procedures - Digital Image Correlation; Basics, Acceptance Test, and Iterim Check; Verein Deutscher Ingenieure e.V. Series Ed.; VDI/VDE, 2019; p 51.
  • Preibisch, S.; Saalfeld, S.; Tomancak, P. Globally Optimal Stitching of Tiled 3D Microscopic Image Acquisitions. Bioinformatics 2009, 25, 1463–1465. DOI: 10.1093/bioinformatics/btp184.
  • Floyd, R. W. Algorithm 97: Shortest Path. Commun. ACM 1962, 5, 345–345. DOI: 10.1145/367766.368168.
  • Lee, T. C.; Kashyap, R. L.; Chu, C. N. Building Skeleton Models via 3-D Medial Surface Axis Thinning Algorithms. CVGIP 1994, 56, 462–478. DOI: 10.1006/cgip.1994.1042.
  • Polder, G.; Hovens, H. L. E.; Zweers, A. J. Measuring Shoot Length of Submerged Aquatic Plants Using Graph Analysis. In Proceedings of the ImageJ User and Developer Conference 2010; Centre de Recherche Public Henri Tudor: Luxembourg, 2010; pp 172–177.
  • Arganda-Carreras, I.; Fernández-González, R.; Muñoz-Barrutia, A.; Ortiz-De-Solorzano, C. 3D Reconstruction of Histological Sections: Application to Mammary Gland Tissue. Microsc Res Tech 2010, 73, 1019–1029. DOI: 10.1002/jemt.20829.
  • Dougherty, R.; Kunzelmann, K.-H. Computing Local Thickness of 3D Structures with ImageJ. MAM 2007, 13, 1678–1679. DOI: 10.1017/S1431927607074430.