22
Views
0
CrossRef citations to date
0
Altmetric
Method

Structural changes and enhanced properties of bamboo fibers by controlled pyrolysis

, , &

References

  • Tirupathi Kumar, J. S.; Hiremath, S. S. Investigation of Mechanical Characterisation and Thermal Performance of Hybrid Natural Fiber Composites for Automotive Applications. Fibers Polym. 2022, 23, 3505–3515. DOI: 10.1007/s12221-022-4576-3.
  • Dong, A.; Teklu, K. M.; Wang, W.; Fan, X.; Wang, Q.; Ardanuy, M.; Dong, Z. Laccase/TEMPO-Mediated Graft Hydrophobization of Jute Fibers to Enhance the Mechanical Properties of Jute/PLA Composites. Fibers Polym. 2022, 23, 243–253. DOI: 10.1007/s12221-021-0125-8.
  • Kushwaha, P. K.; Kumar, R. Influence of Chemical Treatments on the Mechanical and Water Absorption Properties of Bamboo Fiber Composites. J. Reinforc. Plast. Compos. 2011, 30, 73–85. DOI: 10.1177/0731684410383.
  • Ardanuy, M.; Claramunt, J.; Toledo Filho, R. D. Cellulosic Fiber Reinforced Cement-Based Composites: A Review of Recent Research. Construct. Build. Mater. 2015, 79, 115–128. DOI: 10.1016/j.conbuildmat.2015.01.035.
  • Pickering, K. L.; Efendy, M. G. A.; Le, T. M. A Review of Recent Developments in Natural Fibre Composites and Their Mechanical Performance. Compos. A 2016, 83, 98–112. DOI: 10.1016/j.compositesa.2015.08.038.
  • Yan, L.; Kasal, B.; Huang, L. A. A Review of Recent Research on the Use of Cellulosic Fibres, Their Fibre Fabric Reinforced Cementitious, Geo-Polymer and Polymer Composites in Civil Engineering. Compos. B 2016, 92, 94–132. DOI: 10.1016/j.compositesb.2016.02.002.
  • Candelier, K.; Thevenon, M.-F.; Petrissans, A.; Dumarcay, S.; Gerardin, P.; Petrissans, M. Control of Wood Thermal Treatment and Its Effects on Decay Resistance: A Review. Ann. Forest Sci. 2016, 73, 571–583. DOI: 10.1007/s13595-016-0541-x.
  • Dehghan, M.; Faezipour, M.; Azizi, M.; Hosseinabadi, H. Z.; Bari, E.; Nicholas, D. Assessment of Physical, Mechanical, and Biological Properties of Bamboo Plastic Composite Made with Polylactic Acid. Maderas, Cienc. Tecnol. 2019, 21, 599–610. DOI: 10.4067/S0718-221X2019005000415.
  • Dumanlı, A. G.; Windle, A. H. Carbon Fibres from Cellulosic Precursors: A Review. J. Mater. Sci. 2012, 47, 4236–4250. DOI: 10.1007/s10853-011-6081-8.
  • Thakur, V. K.; Thakur, M. K.; Kessler, M. K. Handbook of Composites from Renewable Materials Vol. 1; Wiley: Hoboken, NJ, 2017.
  • Khan, A.; Jagdale, P.; Castellino, M.; Rovere, M.; Jehangir, Q.; Mandracci, P.; Rosso, C.; Tagliaferro, A. Innovative Functionalized Carbon Fibers from Waste: How to Enhance Polymer Composites Properties. Compos. B 2018, 139, 31–39. DOI: 10.1016/j.compositesb.2017.11.064.
  • Huang, X. Fabrication and Properties of Carbon Fibers. Materials 2009, 2, 2369–2403. DOI: 10.3390/ma2042369.
  • Bengtosson, A.; Hecht, P.; Sommertune, J.; Ek, M.; Sedin, M.; Sjoholm, E. Carbon Fibers from Lignin-Cellulose Precursors: Effect of Stabilization Conditions. ACS Sustain. Chem. Eng. 2019, 7, 8440–8448. DOI: 10.1021/acssuschemeng.9b00108.
  • Kleinhans, H.; Salmén, L. Development of Lignin Carbon Fibers: Evaluation of the Carbonization Process. J. Appl. Polym. Sci. 2016, 133, 43965. DOI: 10.1002/app.43965.
  • Lobovikov, M.; Paudel, S.; Hong Ren, M. World Bamboo Resources. A Thematic Study Prepared in the Framework of the Global Forest Resources Assessment; FAO: Rome, 2007.
  • Poppens, R. P.; van Dam, J. E. G.; Elbersen, H. W. Bamboo: Analysing the Potential of Bamboo Feedstock for the Biobased Economy; Netherlands Agency, Ministry of Economic Affairs: Wageningen, The Netherlands, 2013. https://edepot.wur.nl/381054.
  • Tanoue, K.; Umehara, N.; Fujita, M.; Ninomiya, Y. Influence of Inorganic Additives on Ash Adhesion to a Metal Mesh during Bamboo Powder Combustion. J. Wood Chem. Technol. 2023, 43, 138–149. DOI: 10.1080/02773813.2023.2198999.
  • Hossain, M. J.; Ghosh, R. K.; Das, A. K.; Nath, S. C.; Islam, M. R.; Akhter, S.; Rahman, S. Investigation of the Potentiality of Five Bamboo Species in Biorefinery through Analysis of Chemical Profiles. J. Wood Chem. Technol. 2022, 42, 204–210. DOI: 10.1080/02773813.2022.2055770.
  • Barsoukov, E.; Macdonald, J. R. Impedance Spectroscopy, 3rd ed.; Wiley: Hoboken, 2018.
  • Wang, H.; Wang, X.; Cui, Y.; Xue, Z.; Ba, Y. Slow Pyrolysis Polygeneration of Bamboo (Phyllostachys pubescens): Product Yield Prediction and Biochar Formation Mechanism. Bioresour. Technol. 2018, 263, 444–449. DOI: 10.1016/j.biortech.2018.05.040.
  • Li, Z.; Xing, B.; Ding, Y.; Li, Y.; Wang, S. A High-Performance Biochar Produced from Bamboo Pyrolysis with In-Situ Nitrogen Doping and Activation for Adsorption of Phenol and Methylene Blue. Chinese J. Chem. Eng. 2020, 28, 2872–2880. DOI: 10.1016/j.cjche.2020.03.031.
  • Von Hauff, E. Impedance Spectroscopy for Emerging Photovoltaics. J. Phys. Chem. C 2019, 123, 11329–11346. DOI: 10.1021/acs.jpcc.9b00892.
  • Chinaglia, D. L.; Gozzi, G.; Alfaro, R. A. M.; Hessel, R. Espectroscopia de impedância no laboratório de ensino. Rev. Bras. Ensino Fis. 2008, 30, 4504. https://www.scielo.br/j/rbef/a/CtQH65LJBMqzpsNfLv6jmCv/?format=pdf.
  • Yang, H.; Yan, R.; Chen, H.; Lee, D. H.; Zheng, C. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel 2007, 86, 1781–1788. DOI: 10.1016/j.fuel.2006.12.013.
  • Belouadah, Z.; Ati, A.; Rokbi, M. Characterization of New Natural Cellulosic Fiber from Lygeum spartum L. Carbohydr. Polym. 2015, 134, 429–437. DOI: 10.1016/j.carbpol.2015.08.024.
  • Barros, S. S.; Oliveira, E. S.; Pessoa, W. A. G.; Jr, Rosas, A. L. G.; de Freitas, A. E. M.; Lira, M. S. F.; Calderaro, F. L.; Saron, C.; Freitas, F. A. Waste Açaí (Euterpe precatoria Mart.) Seeds as a New Alternative Source of Cellulose: Extraction and Characterization. Res. Soc. Dev. 2021, 7, e31110716661. DOI: 10.33448/rsd-v10i7.16661.
  • Zhao, H.; Kwak, J. H.; Zhang, Z. C.; Brown, H. M.; Arey, B. W.; Holladay, J. E. Studying Cellulose Fiber Structure by SEM, XRD, NMR and Acid Hydrolysis. Carbohydr. Polym. 2007, 68, 235–241. DOI: 10.1016/j.carbpol.2006.12.013.
  • Verma, Y. K.; Singh, A. K.; Paswan, M. K.; Gurmaita, P. K. A Novel Approach to Extract and Characterize Vacuum-Pressurized Bamboo Fibers Using Mechano-Chemical Techniques. J. Wood Chem. Technol. 2023, 43, 230–242. DOI: 10.1080/02773813.2023.2224301.
  • Keiluweit, M.; Nico, P. S.; Johnson, M. G.; Kleber, M. Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. DOI: 10.1021/es9031419.
  • Pusceddu, E.; Montanaro, A.; Fioravanti, G.; Santillí, S. F.; Foscolo, P. U.; Criscuoli, I.; Raschi, A.; Miglieta, F. Comparison between Ancient and Fresh Biochar Samples, A Study on The Recalcitrance of Carbonaceous Structures During Soil Incubation. Int. J. New Technol. Res. 2017, 3, 39–46. https://media.neliti.com/media/publications/263337-comparison-between-ancient-and-fresh-bio-5359c286.pdf.
  • Ristiani, D.; Asih, R.; Astuti, F.; Baqiya, M. A.; Kaewhan, C.; Tunmee, S.; Nakajima, H.; Soontaranon, S.; Darminto D. Mesostructural Study on Graphenic-Based Carbon Prepared from Coconut Shells by Heat Treatment and Liquid Exfoliation. Heliyon, 2022, 8, e09032. DOI: 10.1016/j.heliyon.2022.e09032.
  • Bai, Z.; Lv, Z.; Rao, J.; Sun, D.; Hu, Y.; Yue, P.; Tian, R.; Lü, B.; Bian, J.; Peng, F. The Effect of Bamboo (Phyllostachys pubescens) Cell Types on the Structure of Hemicelluloses. Ind. Crops Prod. 2022, 187, 115464. DOI: 10.1016/j.indcrop.2022.115464.
  • Li, J.; Lian, C.; Wu, J.; Zhong, T.; Zou, Y.; Chen, H. Morphology, Chemical Composition and Thermal Stability of Bamboo Parenchyma Cells and Fibers Isolated by Different Methods. Cellulose 2023, 30, 2007–2021. DOI: 10.1007/s10570-022-05030-6.
  • Ji, Y.; Lei, W.; Huang, Y.; Wu, J.; Yu, W. Influence of Resin Content and Density on Water Resistance of Bamboo Scrimber Composite from a Bonding Interface Structure Perspective. Polymers 2022, 14, 1856. DOI: 10.3390/polym14091856.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.