1,043
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Image Analysis and Computer Simulation of Nanoparticle Clustering in Combustion Systems

, , &
Pages 83-95 | Received 17 Jun 2009, Accepted 02 Oct 2009, Published online: 13 Jul 2010

REFERENCES

  • Adachi , K. , Chung , S. H. , Friedrich , H. and Buseck , P. R. 2007 . Fractal Parameters of Individual Soot Particles Determined using Electron Tomography: Implications for Optical Properties . J. Geophys. Res. D. , 112 : 1 – 10 . D14202
  • Bakrania , S. D. , Miller , T. A. , Perez , C. and Wooldridge , M. S. 2007a . Combustion of Multiphase Reactants for the Synthesis of Nanocomposite Materials . Combust. Flame , 148 : 76 – 87 .
  • Bakrania , S. D. , Perez , C. and Wooldridge , M. S. 2007b . Methane-Assisted Combustion Synthesis of Nanocomposite Tin Dioxide Materials . Proc. Combust. Inst. , 31 : 1797 – 1804 .
  • Balthasar , M. , Frenklach , M. , Boris , J. , Oran , E. , Roth , P. , Rosner , D. E. and Dobbins , R. 2005 . Monte-Carlo Simulation of Soot Particle Coagulation and Aggregation: The Effect of a Realistic Size Distribution . Proc. Combust. Inst. , 30 : 1467 – 1475 .
  • Blaisten-Barojas , E. and Zachariah , M. R. 1992 . Molecular-Dynamics Study of Cluster Growth by Cluster-Cluster Collisions . Phys. Rev. B. , 45 : 4403 – 4408 .
  • Cormen , T. H. , Leiserson , C. E. and Rivest , R. L. 1990 . Introduction to Algorithms , Cambridge : The MIT Press .
  • Das , P. K. and Bhattacharjee , S. Electrostatic Interactions between Nanoparticles in Confined Spaces: Influence of Confining Wall Roughness . Proc. Intl. Conf. MEMS, NANO, Smart Systems . pp. 1 – 5 . 0-7695-1947-4/03
  • di Stasio , S. , Konstandopoulos , A. G. and Kostoglou , M. 2002 . Cluster-Cluster Aggregation Kinetics and Primary Particle Growth of Soot Nanoparticles in Flame by Light Scattering and Numerical Simulations . J. Colloid Interface Sci. , 247 : 33 – 46 .
  • Fisker , R. , Carstensen , J. M. , Hansen , M. F. , Bødker , F. and Mørup , S. 2000 . Estimation of Nanoparticle Size Distributions by Image Analysis . J. Nanopart. Res. , 2 : 267 – 277 .
  • Frank , J. , ed. 1992 . Electron Tomography: Three-Dimensional Imaging with the Transmission Electron Microscope , New York : Plenum Press .
  • Friedlander , S. K. 2000 . Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics , New York : Oxford University Press .
  • Froeschke , S. , Kohler , S. , Weber , A. P. and Kasper , G. 2003 . Impact Fragmentation of Nanoparticle Agglomerates . J. Aerosol Sci. , 34 : 275 – 287 .
  • Fry , D. , Mohammad , A. , Chakrabarti , A. and Sorensen , C. M. 2004 . Cluster Shape Anisotropy in Irreversibly Aggregating Particulate Systems . Langmuir , 20 : 7871 – 7879 .
  • Gelbard , F. , Tambour , Y. and Seinfeld , J. H. 1980 . Sectional Representations for Simulating Aerosol Dynamics . J. Colloid Interface Sci. , 76 : 541 – 556 .
  • Hawa , T. and Zachariah , M. R. 2004 . Molecular Dynamics Study of Particle–Particle Collisions between Hydrogen-Passivated Silicon Nanoparticles . Phys. Rev. B. , 69 : 1 – 9 . 035417
  • Hayashi , S. , Hisaeda , Y. , Asakuma , Y. , Aoki , H. , Miura , T. , Yano , H. and Sawa , Y. 1999 . Simulation of Soot Aggregates Formed by Benzene Pyrolysis . Combust. Flame. , 117 : 851 – 860 .
  • Hu , B. and Köylü , Ü. Ö. 2004 . Size and Morphology of Soot Particulates Sampled from a Turbulent Nonpremixed Acetylene Flame . Aerosol Sci. Tech. , 38 : 1009 – 1018 .
  • http://bio3d.colorado.edu/imod/index.htmlThe IMOD Home Page, Boulder Lab For 3D Electron Microscopy of Cells, University of Colorado
  • Kohjiya , S. , Katoh , A. , Shimanuki , J. , Haseqawa , T. and Ikeda , Y. 2005 . Three-Dimensional Nano-Structure of In Situ Silica in Natural Rubber as Revealed by 3D-TEM/Electron Tomography . Polymer , 46 : 4440 – 4446 .
  • Koster , A. J. , Ziese , U. , Verkleij , A. J. , Janssen , A. H. and de Jong , K. P. 2000 . Three-Dimensional Transmission Electron Microscopy: A Novel Imaging and Characterization Technique with Nanometer Scale Resolution for Materials Science . J. Phys. Chem. B , 104 : 9368 – 9370 .
  • Köylü , Ü. Ö. , Faeth , G. M. , Farias , T. L. and Carvalho , M. G. 1995 . Fractal and Projected Structure Properties of Soot Aggregates . Combust. Flame , 100 : 621 – 633 .
  • Kremer , J. R. , Mastronarde , D. N. and McIntosh , R. 1996 . Computer Visualization of Three-Dimensional Image Data using IMOD . J. Struct. Bio. , 116 : 71 – 76 .
  • Landgrebe , J. D. and Pratsinis , S. E. 1990 . Discrete-Sectional Model for Particulate Production by Gas-Phase Chemical Reaction and Aerosol Coagulation in the Free-Molecular Regime . J. Colloid Interface Sci. , 139 : 63 – 86 .
  • Lümmen , N. and Kraska , T. 2004 . Investigation of the Formation of Iron Nanoparticles from the Gas Phase by Molecular Dynamics Simulation . Nanotech. , 15 : 525 – 533 .
  • Maricq , M. M. 2007 . Coagulation Dynamics of Fractal-Like Soot Aggregates . J. Aerosol Sci. , 38 : 141 – 156 .
  • McGill , R. , Tukey , J. W. and Larsen , W. A. 1978 . Variations of Boxplots . The Amer. Stat. , 32 : 12 – 16 .
  • Miller , T. A. , Bakrania , S. D. , Perez , C. and Wooldridge , M. S. 2005 . A New Method for Direct Preparation of Tin-Dioxide Nanocomposite Materials . J. Mater. Res. , 20 : 2977 – 2987 .
  • Miller , T. A. , Bakrania , S. D. , Perez , C. and Wooldridge , M. S. 2006 . “ Nanostructured Tin Dioxide Materials for Gas Sensor Applications ” . In Functional Nanomaterials , Edited by: Rosenberg , E. and Geckeler , K. E. 453 – 475 . California : American Scientific Publishers . chap. 29
  • Mueller , M. E. , Blanquart , G. and Pitsch , H. 2009 . A Joint Volume-Surface Model of Soot Aggregation with the Method of Moments . Proc. Combust. Inst. , 32 : 785 – 792 .
  • Morgan , N. , Wells , C. , Kraft , M. and Wagner , W. 2005 . Modelling Nanoparticle Dynamics: Coagulation, Sintering, Particle Inception and Surface Growth . Combust. Theory Model. , 9 : 449 – 461 .
  • Morgan , N. , Kraft , M. , Balthasar , M. , Wong , D. , Frenklach , M. and Mitchell , P. 2007 . Numerical Simulations of Soot Aggregation in Premixed Laminar Flames . Proc. Combust. Inst. , 31 : 693 – 700 .
  • Nakaso , K. , Fujimoto , T. , Seto , T. , Shimada , M. , Okuyama , K. and Lunden , M. M. 2001 . Size Distribution Change of Titania Nano-Particle Agglomerates Generated by Gas Phase Reaction, Agglomeration, and Sintering . Aerosol Sci. Tech. , 35 : 929 – 947 .
  • Nizich , S. V. , Pope , A. A. , Driver , L. M. and the Pechan-Avanti Group . 2000 . National Air Pollutant Emission Trends: 1900–1998 , United States Environmental Protection Agency . EPA Report No. EPA-454/R-00-002
  • Nowack , B. and Bucheli , T. D. 2007 . Occurrence, Behavior and Effects of Nanoparticles in the Environment . Environ. Pollut. , 150 : 5 – 22 .
  • Onischuk , A. A. , di Stasio , S. , Karasev , V. V. , Strunin , V. P. , Baklanov , A. M. and Panfilov , V. N. 2000 . Evidence for Long-Range Coulomb Effects During Formation of Nanoparticle Agglomerates from Pyrolysis Combustion Routes . J. Phys. Chem. A. , 104 : 10426 – 10434 .
  • Pope , C. J. and Howard , J. B. 1997 . Simultaneous Particle and Molecule Modeling (SPAMM): An Approach for Combining Sectional Aerosol Equations and Elementary Gas-Phase Reactions . Aerosol Sci. Tech. , 27 : 73 – 94 .
  • Pratsinis , S. E. 1998 . Flame Aerosol Synthesis of Ceramic Powders . Prog. Energy Combust. Sci. , 24 : 197 – 219 .
  • Qin , Y. and Fichthorn , K. A. 2003 . Molecular–Dynamics Simulation of Forces between Nanoparticles in a Lennard-Jones Liquid . J. Chem. Phys. , 119 : 9745 – 9754 .
  • Radzilowski , L. H. , Carragher , B. O. and Stupp , S. I. 1997 . Three-Dimensional Self-Assembly of Rodcoil Copolymer Nanostructures . Macromolecules. , 30 : 2110 – 2119 .
  • Reetz , M. T. , Maase , M. , Schilling , T. and Tesche , B. 2000 . Computer Image Processing of Transmission Electron Micrograph Pictures as a Fast Reliable Tool to Analyze the Size of Nanoparticles . J. Phys. Chem. B. , 104 : 8779 – 8781 .
  • Sorensen , C. M. 2001 . Light Scattering by Fractal Aggregates: A Review . Aerosol Sci. Tech , 35 : 648 – 687 .
  • Sinyagin , A. , Belov , A. and Kotov , N. 2005 . Monte Carlo Simulation of Linear Aggregate Formation from CdTe Nanoparticles . Model. Sim. Mater. Sci. Eng. , 13 : 389 – 399 .
  • Suh , S.-M. , Zachariah , M. R. and Girshick , S. L. 2001 . Modeling Particle Formation during Low-Pressure Silane Oxidation: Detailed Chemical Kinetics and Aerosol Dynamics . J. Vac. Sci. Tech. A. , 19 : 940 – 951 .
  • Tian , K. , Liu , F. , Yang , M. , Thomson , K. A. , Snelling , D. R. and Smallwood , G. J. 2007 . Numerical Simulation Aided Relative Optical Density Analysis of TEM Images for Soot Morphology Determination . Proc. Combust. Inst. , 31 : 861 – 868 .
  • Tian , K. , Thomson , K. A. , Liu , F. , Snelling , D. R. , Smallwood , G. J. and Wang , D. 2006 . Determination of the Morphology of Soot Aggregates using the Relative Optical Density Method for the Analysis of TEM Images . Combust. Flame , 144 : 782 – 791 .
  • Ulrich , G. D. 1971 . Theory of Particle Formation and Growth in Oxide Synthesis Flames . Comb. Sci. Tech. , 4 : 47 – 57 .
  • Ulrich , G. D. , Milnes , B. A. and Subramanian , N. S. 1976 . Particle Growth in Flames. 2. Experimental Results for Silica Particles . Comb. Sci. Tech. , 14 : 243 – 249 .
  • Wooldridge , M. S. 1998 . Gas-Phase Combustion Synthesis of Particles . Prog. Energy Combust. Sci. , 24 : 63 – 87 .
  • Wooldridge , M. S. , Torek , P. V. , Donovan , M. T. , Hall , D. L. , Miller , T. A. , Palmer , T. R. and Schrock , C. R. 2002 . An Experimental Investigation of Gas-Phase Combustion Synthesis of SiO2 Nanoparticles using a Multi-Element Diffusion Flame Burner . Combust. Flame , 131 : 98 – 109 .
  • Wu , J. J. and Flagan , R. C. 1988 . Discrete-Sectional Solution to the Aerosol Dynamic Equations . J. Colloid Interface Sci. , 123 : 339 – 352 .
  • Wu , J. J. , Nguyen , H. V. and Flagan , R. C. 1987 . Method for the Synthesis of Submicron Particles . Langmuir , 3 : 266 – 271 .
  • Xiong , Y. and Pratsinis , S. E. 1991 . Gas Phase Production of Particles in Reactive Turbulent Flows . J. Aerosol Sci. , 22 : 637 – 655 .
  • Xiong , Y. and Pratsinis , S. E. 1993 . Formation of Agglomerate Particles by Coagulation and Sintering. Part I. A Two-Dimensional Solution of the Population Balance Equation . J. Aerosol Sci. , 24 : 283 – 300 .
  • Yazicioglu , A. G. , Megaridis , C. M. , Campbell , A. , Lee , K.-O. and Choi , M. Y. 2001 . Measurement of Fractal Properties of Soot agglomerates in Laminar Coflow Diffusion Flames using Thermophoretic Sampling in Conjunction with Transmission Electron Microscopy and Image Processing . Combust. Sci. Tech. , 171 : 71 – 87 .
  • Zachariah , M. R. and Carrier , M. J. 1999 . Molecular Dynamics Computation of Gas-Phase Nanoparticle Sintering: A Comparison with Phenomenological Models . J. Aerosol Sci. , 30 : 1139 – 1151 .
  • Zachariah , M. R. , Carrier , M. J. and Blaisten-Barojas , E. 1994a . “ Atomistic Simulation of Vapor-Phase Nanoparticle Formation ” . In Molecularly Designed Ultrafine/Nanostructured Materials , Edited by: Gonsalves , K. E. , Chow , G.-M. , Xiao , T. D. and Cammarata , R. C. 343 – 348 . Pittsburgh : Materials Research Society .
  • Zachariah , M. R. , Carrier , M. J. and Blaisten-Barojas , E. 1994b . “ Molecular Dynamics Simulation of Large Cluster Growth ” . In Gas Phase and Surface Chemistry , Edited by: Mountziaris , T. J. , Paz-Pujalt , G. R. , Smith , F. T. J. and Westmoreland , P. R. 75 – 80 . Pittsburgh : Materials Research Society .
  • Zachariah , M. R. and Semerjian , H. G. 1989 . Simulation of Ceramic Particle Formation: Comparison with In-Situ Measurements . AIChE Journal , 35 : 2003 – 2012 .
  • Zachariah , M. R. and Tsang , W. 1993 . Application of Ab Initio Molecular Orbital and Reaction Rate Theories to Nucleation Kinetics . Aerosol Sci. Tech. , 19 : 499 – 513 .
  • Zachariah , M. R. and Tsang , W. 1994 . “ Theoretical Prediction of Gas-Phase Nucleation Kinetics of SiO ” . In Gas Phase and Surface Chemistry , Edited by: Mountziaris , T. J. , Paz-Pujalt , G. R. , Smith , F. T. J. and Westmoreland , P. R. 19 – 24 . Pittsburgh : Materials Research Society .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.