1,554
Views
21
CrossRef citations to date
0
Altmetric
Original Article

Electrospray Dense Suspensions of TiO2 Nanoparticles for Dye Sensitized Solar Cells

, , , , , , , , & show all
Pages 1302-1309 | Received 10 May 2013, Accepted 29 Jul 2013, Published online: 28 Apr 2014

REFERENCES

  • Almería, B., Deng, W., Fahmy, T.M., and Gomez, A. (2010). Controlling the Morphology of Electrospray-Generated PLGA Micro-Particles for Drug Delivery. J Colloid Interf. Sci., 343:125–133.
  • Bach, U., Lupo, D., Comte, P., Moser, J.E., Weissörtel, F., Salbeck, J., et al. (1998). Solid-State Dye-Sensitized Mesoporous TiO2 Solar Cells with High Photon-to-Electron Conversion Efficiencies. Nature, 395:583–585.
  • Chen, D., Huang, F., Cheng, Y.B., and Caruso, R.A. (2009). Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Solar Cells. Adv. Mater., 21:2206–2210.
  • Chou, T.P., Zhang, Q., Fryxell, G.E., and G. Cao, G.Z. (2007). Hierarchically Structured ZnO Film for Dye-Sensitized Solar Cells with Enhanced Energy Conversion Efficiency. Adv. Mater., 19:2588–2592.
  • Cloupeau, M., and Foch, B.P. (1990). Electrostatic Spraying of Liquids: Main Functioning Modes. J. Electrostat., 25:165–184.
  • Deng, W., and Gomez, A. (2010). The Role of Electric Charge in Microdroplets Impacting on Conducting Surfaces. Phys. Fluids, 22:051703–051707.
  • Deng, W., Klemic, J.F., Li, X., Reed, M., and Gomez, A. (2006). Increase of Electrospray through Put Using Multiplexed Microfabricated Sources for The Scalable Generation of Monodisperse Droplets. J. Aerosol Sci., 37:696–714.
  • Deng, W., Waits, C.M., and Gomez, A. (2010). Digital Electrospray for Controlled Deposition. Rev. Sci. Instrum., 81:0351141–0351146.
  • Deng, W., Waits, C.M., Morgan, B., and Gomez, A. (2009). Compact Multiplexing of Mono-Disperse Electrosprays. J. Aerosol Sci., 40:907–918.
  • Ding, I.K., Kyriazi, J.M., Ha, N.L. C., Chittibabu, K.G., S.M. Zakeeruddin, S.M., and Grätzel, M. (2010). Deposition of Hole-Transport Materials in Solid-State Dye-Sensitized Solar Cells by Doctor-Blading. Org. Electron., 11:1217–1222.
  • Fernández, D.L. M. (2007). The Fluid Dynamics of Taylor Cones. Annu. Rev. Fluid Mech., 39:217–243.
  • Fernández, D.L. M., and Loscertales, I.G. (1994). The Current Emitted by Highly Conducting Taylor Cones. Fluid Mech., 260:155–184.
  • Fujimoto, M., Kado, T., Takashima, W., Kaneto, K., and Hayase, S. (2006). Dye-Sensitized Solar Cells Fabricated by Electrospray Coating Using TiO2 Nanocrystal Dispersion Solution. J. Electrochem. Soc., 153:A826–A829.
  • Ganan-Calvo, A.M., Lasheras, J.C., Davila, J., and Barrero, A. (1994). Electrostatic Spray Emitted from an Electrified Conical Meniscus. J. Aerosol Sci., 25:1121–1142.
  • Grätzel, M. (2001). Photoelectrochemical Cells. Nature, 414:338–344.
  • Hagfeldt, A., and Grätzel, M. (2000). Molecular Photovoltaics. Acc. Chem. Res., 33:269–277.
  • Hartman, R.P. A., Borra, J.P., Brunner, D.J., Marijnissen, J.C. M., and Scarlett, B. (1999). Evolution of Electrohydrodynamic Sprays Produced in Cone-Jet Mode. A Phys. Model J. Electrostat., 47:143–170.
  • Hao, S., Wu, J., Fan, L., Huang, Y., Lin, J., and Wei, Y. (2004). The Influence of Acid Treatment of TiO2 Porous Film Electrode on Photoelectric Performance of Dye-Sensitized Solar Cell. Sol. Energy, 76:745–750
  • Higuera, F.J. (2003). Flow Rate and Electric Current Emitted by a Taylor Cone. Fluid Mech., 484:303–327.
  • Hogan, C., and Biswas, P. (2008). Porous Film Deposition by Electrohydrodynamic Atomization of Nanoparticle Sols. Aerosol Sci. and Technol., 42(1):75–85.
  • Huang, F., Chen, D., Zhang, L.X., Caruso, R.A., and Cheng, Y.B. (2010). Dual-Function Scattering Layer of Submicrometer-Sized Mesoporous TiO2 Beads for High-Efficiency Dye-Sensitized Solar Cells. Adv. Mater., 20:1301–1305.
  • Hwang, D., Lee, H., Jang, S.Y., Jo, S.M., Kim, D., Seo, Y., et al. (2011). Electrospray Preparation of Hierarchically-structured Mesoporous TiO2 Spheres for Use in Highly Efficient Dye-Sensitized Solar Cells. Appl. Mater. Interfaces., 2011:2719–2725.
  • Ito, S., Murakami, S.T. N., Comte, P., Liska, P., Grätzel, C.K. Nazeeruddin, M.K., et al. (2008). Fabrication of Thin Film Dye Sensitized Solar Cells with Solar to Electric Power Conversion Efficiency over 10%. Thin Solid Films., 516:4613–4619.
  • Kim, Y.J., Lee, M.H., Kim, H.J., Lim, G., Choi, Y.S., Park, N.G., et al. (2009). Formation of Highly Efficient Dye-Sensitized Solar Cells by Hierarchical Pore Generation with Nanoporous TiO2 Spheres. Adv. Mater., 21:3668–3673.
  • Modesto-Lopez, L., and Biswas, P. (2010). Role of the Effective Electrical Conductivity of Nanosuspensions in the Generation of TiO2 Agglomerates with Electrospray. J. Aerosol Sci., 41:790–804.
  • O’Regan, B., and Grätzel, M. (1991). A Low-Cost, High-Efficiency Solar Cell Based on Dye Sensitized Colloidal TiO2 Films. Nature, 353:737–740.
  • Oh, H., Kim, K., and Kim, S. (2008). Characterization of Deposition Patterns Produced by Twin-Nozzle Electrospray. J. Aerosol. Sci., 39(9):801–813.
  • Papageorgiou, N., Maier, W.F., and Grätzel, M. (1997). An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media. J. Electrochem. Soc., 144:876–884.
  • Peng, B., Jungmann, G., Jäger, C., Haarer, D., Schmidt, H.W., and Thelakkat, M. (2004). Systematic Investigation of The Role of Compact TiO2 Layer in Solid State Dye-Sensitized TiO2 Solar Cells. Cord. Chem. Rev., 248:1479–1489.
  • Pichot, F., Pitts, J.R., and Gregg, B.A. (2000). Low-Temperature Sintering of TiO2 Colloids: Application to Flexible Dye-Sensitized Solar Cells. Langmuir5626–5630.
  • Sudhagar, P., Asokan, K., Jung, J.H., Lee, Y.G., Park, S., and Kang, Y.S. (2011). Efficient Performance of Electrostatic Spray-Deposited TiO2 Blocking Layers in Dye-Sensitized Solar Cells after Swift Heavy Ion Beam Irradiation. Nanoscale Res. Lett.30–36.
  • Tang, K., and Gomez, A. (1994). On the Structure of an Electrospray of Monodisperse Droplets. Phys. Fluids, 6:2317–2322.
  • Taylor, G. (1964). Disintegration of Water Drops in an Electric Field. Proc. Royal Soc. London, 280:383–397
  • Tripathi, D.C., Tripathi, A.K., and Mohapatra, Y.N. (2001). Mobility Determination Using Frequency Dependence of Imaginary Part of Impedance (Im Z) for Organic and Polymeric Thin Films. Appl. Phys. Lett., 98:033304–033306
  • Vehring, R., Willard, R., David, F., and Ballesteros, L. (2007). Particle Formation in Spray Drying. Aerosol Sci., 38:728–746.
  • Wilhelm, O., Mädler, L., and Pratsinis, S.E. (2003). Electrospray Evaporation and Deposition. J. Aerosol. Sci., 34:815–836.
  • Yang, W., Lojewski, B, Wei, Y., and Deng, W. (2012). Interactions and Deposition Patterns of Multiplexed Electrosprays, J. Aerosol Sci., 46:20–33.
  • Yella, A., Lee, H.W., Tsao, H.N., Chen, Y.Y., Chandiran, A.K., Nazeeruddin, M.K. E., et al. (2011). Porphyrin-Sensitized Solar Cells with Cobalt(II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency. Science, 334:629–634.
  • Zhang, Y., Wu, Y.L., Xie, E., Duan, H., Han, W., and Zhao, J. (2009). A Simple Method to Prepare Uniform-Size Nanoparticle TiO2 Electrodes for Dye-Sensitized Solar Cells. J. Power Sources, 189:1256–1263.
  • Zhao, X., Lojewski, B., Yang, W., Zhu, T., Mi, B., Gao, Z., et al. (2012). Electrospray as a Fabrication Tool in Organic Photovoltaics. Rev. Nanosci. Nanotechnol., 172–186.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.