911
Views
20
CrossRef citations to date
0
Altmetric
Original Article

Nonisothermal Droplet Growth in the Free Molecular Regime

, , &
Pages 1310-1324 | Received 27 Feb 2013, Accepted 22 Aug 2013, Published online: 28 Apr 2014

REFERENCES

  • Abraham, S.F., and Lester, H. (1954). High-Speed Machine Computation of Ideal Gas Thermodynamic Functions. I. Isotopic Water Molecules. J. Chem. Phys., 22:2051–2058.
  • Alam, M.K. (1987). The Effect of van der Waals and Viscous Forces on Aerosol Coagulation. Aerosol Sci. Technol., 6:41–52.
  • Alonso, M., Hashimoto, T., Kousaka, Y., Higuchi, M., and Nomura, T. (1998). Transient Bipolar Charging of a Coagulating Nanometer Aerosol. J. Aerosol Sci., 29:263–270.
  • Bakhtar, F., Zamri, M.Y., and Rodriguez-Lelis, J.M. (2007). A Comparative Study of Treatment of Two-dimensional Two-phase Flows of Steam by a Runge-Kutta and by Denton's Methods. P. I. Mech. Eng. C-J. Mech., 221:689–706.
  • Barrett, J.C., and Clement, C.F. (1988). Growth-Rates for Liquid-Drops. J. Aerosol Sci., 19:223–242.
  • Beloded, V.V., Kirichewskij, G.A., and Nuzhnyj, V.M. (1989). Condensation Coefficient of Metastable Water. J. Aerosol Sci., 20:1047–1050.
  • Bohn, D.E., Surken, N., and Kreitmeier, F. (2003). Nucleation Phenomena in a Multi-stage Low Pressure Steam Turbine. P. I. Mech. Eng. A: J. Pow., 217:453–460.
  • Davidovits, P., Kolb, C.E., Williams, L.R., Jayne, J.T., and Worsnop, D.R. (2006). Mass Accommodation and Chemical Reactions at Gas-liquid Interfaces. Chem. Rev., 106:1323–1354.
  • Davidovits, P., Worsnop, D.R., Jayne, J.T., Kolb, C.E., Winkler, P., Vrtala, A., et al. (2004). Mass Accommodation Coefficient of Water Vapor on Liquid Water. Geophys. Res. Lett., 31:L22111–L22111.
  • Drisdell, W.S., Cappa, C.D., Smith, J.D., Saykally, R.J., and Cohen, R.C. (2008). Determination of the Evaporation Coefficient of D2O. Atmos. Chem. Phys., 8:6699–6706.
  • Dykas, S., Wróblewski, W., and Łukowicz, H. (2007). Prediction of Losses in the Flow Through the Last Stage of Low-pressure Steam Turbine. Int. J. Numerical Methods in Fluids, 53:933–945.
  • Eames, I.W., Marr, N.J., and Sabir, H. (1997). The Evaporation Coefficient of Water: A Review. Int. J. Heat Mass Transfer, 40:2963–2973.
  • Gajewski, P., Kulicki, A., Wisniewski, M., and Zgorzelski, M. (1974). Kinetic Theory Approach to the Vapor-phase Phenomena in a Nonequilibrium Condensation Process. Physics of Fluids, 17:321–327.
  • Gerber, A.G., and Mousavi, A. (2007). Application of Quadrature Method of Moments to the Polydispersed Droplet Spectrum in Transonic Steam Flows with Primary and Secondary Nucleation. Appl. Mathematical Modelling, 31:1518–1533.
  • Ghosh, D., Bergmann, D., Scwering, R., Wölk, J., Strey, R., Tanimura, S., et al. (2010). Homogeneous Nucleation of a Homologous Series of n-alkanes (CiH2i+2, i = 7–10) in a Supersonic Nozzle. J. Chem. Phys., 132:024307-1–024307-17.
  • Gyarmathy, G. (1963). Zur Wachstumsgeschwindigkeit Kleiner Flussigkeitstropfen in Einer Ubersattigten Atmosphare. Zeitschrift Fur Angewandte Mathematik Und Physik 14:280–293.
  • Hagen, D.E., Schmitt, J., Trueblood, M., Carstens, J., White, D.R., and Alofs, D.J. (1989). Condensation Coefficient Measurement for Water in the Umr Cloud Simulation Chamber. J. Atmos. Sci., 132:144301-1–144301-22.
  • Hickman, K. (1965). Evaporation Coefficient of Liquids, in First International Symposium Water Desalination, Vol. 1, pp. 180–223, U.S. Department of the Interior, Washington, DC.
  • Hickman, K. (1966). Reviewing the Evaporation Coefficient. Desalination, 1:13–29.
  • Hidy, G.M., and Brock, J.R. (1970). The Dynamics of Aerocolloidal Systems. Pergamon, New York.
  • Hill, P.G. (1966). Condensation of Water Vapour During Supersonic Expansion in Nozzles. J. Fluid Mech., 25:593–620.
  • Hubbard, G.L., Denny, V.E., and Mills, A.F. (1975). Droplet Evaporation – Effects of Transients and Variable Properties. Int. J. Heat Mass Transfer, 18:1003–1008.
  • Kennard, E.H. (1938). Kinetic Theory of Gases, McGraw-Hill, New York, pp. 312–315.
  • Kennedy, I.M., and Harris, S.J. (1990). Enhancement of Silica Aerosol Coagulation by Van Der Waals Forces. Aerosol Sci. Technol., 12:869–875.
  • Kerminen, V.-M. (1994). Simulation of Brownian Coagulation in the Presence of van der Waals Forces and Viscous Interactions. Aerosol Sci. Technol., 20:207–214.
  • Kerminen, V.M., Viisanen, Y., Vesala, T., and Hillamo, R. (1991). Correction for the Brownian Coagulation Coefficient Due to van der Waals Forces between Non-equal Sized Particles. J. Aerosol Sci., 22(Suppl. 1):S105–S107.
  • Kotlarchyk, M., and Chen, S.H. (1983). Analysis of Small Angle Neutron Scattering Spectra from Polydisperse Interacting Colloids. J. Chem. Phys., 79:2461–2469.
  • Laksmono, H., Tanimura, S., Allen, H.C., Wilemski, G., Zahniser, M.S., Shorter, J.H., et al. (2011). Monomer, Clusters, Liquid: An Integrated Spectroscopic Study of Methanol Condensation. Phys. Chem. Chem. Phys., 13:5855–5871.
  • Looijmans, K.N. H. (1995). Homogeneous Nucleation and Droplet Growth in the Coexistence Region of n-alkane/methane Mixtures at High Pressures, in Department of Applied Physics, Eindhoven University of Technology PhD Thesis, Eindhoven.
  • Luijten, C.C. M., van Hooy, R.G. P., Janssen, J.W. F., and van Dongen, M.E. H. (1998). Multicomponent Nucleation and Droplet Growth in Natural Gas. J. Chem. Phys., 109:3553–3558.
  • Luo, X.S., Prast, B., Van Dongen, M.E. H., Hoeijmakers, H.W. M., and Yang, J.M. (2006). On Phase Transition in Compressible Flows: Modelling and Validation. J. Fluid Mech., 548:403–430.
  • Marek, R., and Straub, J. (2001). Analysis of the Evaporation Coefficient and the Condensation Coefficient of Water. Int. J. Heat Mass Transfer., 44:39–53.
  • Marlow, W.H. (1980). Lifshitz–van der Waals Forces in Aerosol Particle Collisions. I. Introduction: Water Droplets. J. Chem. Phys., 73:6288–6295.
  • Mason, B.J. (1953). The Growth of Ice Crystals in a Supercooled Water Cloud. Quarterly J. Royal Meteorological Soc., 79:104–111.
  • Mills, A.F., and Seban, R.A. (1967). Condensation Coefficient of Water. Int. J. Heat Mass Transfer, 10:1815–1827.
  • Moheban, M., and Young, J.B. (1985). A Study of Thermal Nonequilibrium Effects in Low-pressure Wet-steam Turbines Using a Blade-to-Blade Time-marching Technique. Int. J. Heat Fluid Flow, 6:269–278.
  • Morita, A., Sugiyama, M., Kameda, H., Koda, S., and Hanson, D.R. (2004). Mass Accommodation Coefficient of Water: Molecular Dynamics Simulation and Revised Analysis of Droplet Train/flow Reactor Experiment. J. Phys. Chem. B, 108:9111–9120.
  • Mozurkewich, M. (1986). Aerosol Growth and the Condensation Coefficient for Water: A Review. Aerosol Sci. Technol., 5:223–236.
  • Muitjens, M., Kalikmanov, V.I., Dongen, v.M. E. H., Hirschberg, A., and Derks, P.A. H. (1994). On Mist Formation in Natural Gas. Revue de l’Institut Francais du Petrole, 49:63–72.
  • NIST. (2002). NIST Standard Reference Database REFPROP 23, in Reference Fluid Thermodynamic and Transport Properties. . E. Lemon, M. McLinden, and M. Huber, eds., National Institute of Standards and Technology, Gaithersburg, MD, USA.
  • Okimoto, F.T., and Betting, M. (2001). Twister Supersonic Separator, in Proceedings of the 51st Laurance Reid Gas Conditioning Conference, Norman, Oklahoma, USA.
  • Okuyama, K., Kousaka, Y., and Hayashi, K. (1984). Change in Size Distribution of Ultrafine Aerosol-Particles Undergoing Brownian Coagulation. J. Colloid Interface Sci., 101:98–109.
  • Paci, P., Zvinevich, Y., Tanimura, S., Wyslouzil, B.E., Zahniser, M., Shorter, J., et al. (2004). Spatially Resolved Gas Phase Composition Measurements in Supersonic Flows Using Tunable Diode Laser Absorption Spectroscopy. J. Chem. Phys., 121:9964–9970.
  • Peeters, P., Hruby, J., and van Dongen, M.E. H. (2001). High Pressure Nucleation Experiments in Binary and Ternary Mixtures. J. Phys. Chem. B, 105:11763–11771.
  • Pruppacher, H.R., and Klett, J.D. (1997). Microphysics of Clouds and Precipitation. Kluwer Academic Publishers, Dordrecht.
  • Rideal, E.K. (1925). The Influence of Thin Surface Films on the Evaporation of Water. J. Phys. Chem., 29:1585–1588.
  • Rijkers, M.P. W. M., Malais, M., Peters, C.J., and de Swaan Arons, J. (1992). Measurements on the Phase Behavior of Binary Hydrocarbon Mixtures for Modelling the Condensation Behavior of Natural Gas: Part I. The System Methane + Decane. Fluid Phase Equilibria, 71:143–168.
  • Scharge, R.W. (1953). A Theoretical Study of Interface Mass Transfer. Columbia University Press, New York.
  • Seinfeld, J.H. (1986). Atmospheric Chemistry and Physics of Air Pollution. John Wiley & Sons, Inc., New York.
  • Seinfeld, J.H., and Pandis, S.N. (1998). Atmospheric Chemistry and Physics. John Wiley & Sons, New York.
  • Shaw, R.A., and Lamb, D. (1999). Experimental Determination of the Thermal Accommodation and Condensation Coefficients of Water. J. Chem. Phys., 111:10659–10663.
  • Sinha, S., Wyslouzil, B.E., and Wilemski, G. (2009). Modeling of H2O/D2O Condensation in Supersonic Nozzles, Aerosol Sci. Technol., 43:9–24.
  • Smolders, H.J. (1992). Nonlinear Wave Phenomena in a Gas-vapor Mixture with Phase Transition, PhD Thesis, Eindhoven Institute of Technology.
  • Tanimura, S., Wyslouzil, B.E., and Wilemski, G. (2010). CH3CH2OD/D2O Binary Condensation in a Supersonic Laval Nozzle: Presence of Small Clusters Inferred from a Macroscopic Energy Balance. J. Chem. Phys., 132:144301–144322.
  • Tanimura, S., Zvinevich, Y., Wyslouzil, B.E., Zahniser, M., Shorter, J., Nelson, D., et al. (2005). Temperature and Gas-phase Composition Measurements in Supersonic Flows Using Tunable Diode Laser Absorption Spectroscopy: The Effect of Condensation on the Boundary-layer Thickness. J. Chem. Phys., 122:194304-1–1943041-11.
  • Tsuruta, T., and Nagayama, G. (2004). Molecular Dynamics Studies on the Condensation Coefficient of Water. J. Phys. Chem. B, 108:1736–1743.
  • Vesala, T., Kulmala, M., and Olin, M. (1990). Condensation and Evaporation of Binary Droplets with Internal Mass-Transfer. J. Aerosol Sci, 21:S7–S10.
  • Vieceli, J.S., and Tobias, D.J. (2004). Mass Accomodation Coefficient for Water Vapor on Liquid Water from Computer Simulations. Abstracts of Papers of the American Chemical Society, 227:U1003–U1003.
  • Wagner, P.E. (1982). Aerosol Growth by Condensation, in Aerosol Microphysics II:Chemical Physics of Microparticles, W.H. Marlow, ed., Springer-Verlag, Dusseldorf, Germany, pp. 129–178.
  • White, A.J., Young, J.B., and Walters, P.T. (1996). Experimental Validation of Condensing Flow Theory for a Stationary Cascade of Steam Turbine Blades. Phil. Trans. R. Soc. Lond. A: Mathematical, Physical and Engineering Sciences, 354:59–88.
  • Wölk, J., and Strey, R. (2001). Homogeneous Nucleation of H2O and D2O in Comparison: The Isotope Effect. J. Phys. Chem. B, 105:11683–11701.
  • Xia, T.K., and Landman, U. (1994). Molecular Evaporation and Condensation of Liquid n-alkane Films. J. Chem. Phys., 101:2498–2507.
  • Young, J.B. (1982). The Spontaneous Condensation of Steam in Supersonic Nozzles. PCH PhysicoChemical Hydrodynamics, 3:57–82.
  • Young, J.B. (1991). The Condensation and Evaporation of Liquid Droplets in a Pure Vapour at Arbitrary Knudsen Number. Int. J. Heat Mass Transfer, 34:1649–1661.
  • Zagaynov, A.V., Nuzhny, V.M., Cheusova, T.A., and Lushnikov, A.A. (2000). Evaporation of Water Droplet and Condensation Coefficient: Theory and Experiment. J. Aerosol Sci., 31:S795–S796.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.