550
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

An Analytic Equation for the Volume Fraction of Condensationally Grown Mixed Particles and Applications to Secondary Organic Material Produced in Continuously Mixed Flow Reactors

, &
Pages 803-812 | Received 10 Dec 2013, Accepted 30 Apr 2014, Published online: 11 Aug 2014

REFERENCES

  • Davis, M.E., and Davis, R.J. (2003). Fundamentals of Chemical Reaction Engineering. McGraw-Hill, New York.
  • Drozd, G.T., Woo, J.L., and McNeill, V.F. (2013). Self-Limited Uptake of α-Pinene Oxide to Acidic Aerosol: The Effects of Liquid–Liquid Phase Separation and Implications for the Formation of Secondary Organic Aerosol and Organosulfates from Epoxides. Atmos. Chem. Phys., 13:8255–8263. doi:10.5194/acp-13-8255-2013.
  • Hallquist, M., Wenger, J.C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., et al. (2009). The Formation, Properties and Impact of Secondary Organic Aerosol: Current and Emerging Issues. Atmos. Chem. Phys., 9:5155–5236. doi:10.5194/acp-9-5155–2009.
  • King, S.M., Rosenoern, T., Shilling, J.E., Chen, Q., and Martin, S.T. (2009). Increased Cloud Activation Potential of Secondary Organic Aerosol for Atmospheric Mass Loadings. Atmos. Chem. Phys., 9:2959–2971.
  • King, S., Rosenoern, T., Shilling, J., Chen, Q., Wang, Z., Biskos, G., et al. (2010). Cloud Droplet Activation of Mixed Organic-Sulfate Particles Produced by the Photooxidation of Isoprene. Atmos. Chem. Phys., 10:3953–3964.
  • Kleindienst, T.E., Smith, D.F., Li, W., Edney, E.O., Driscoll, D.J., Speer, R.E., et al. (1999). Secondary Organic Aerosol Formation from the Oxidation of Aromatic Hydrocarbons in the Presence of Dry Submicron Ammonium Sulfate Aerosol. Atmos. Environ., 33:3669–3681.
  • Knutson, E.O., and Whitby, K.T. (1975). Aerosol Classification by Electric Mobility: Apparatus, Theory, and Applications. J. Aerosol Sci., 6:443–451.
  • Kuwata, M., and Martin, S.T. (2012). Particle Size Distributions Following Condensational Growth in Continuous Flow Aerosol Reactors as Derived from Residence Time Distributions: Theoretical Development and Application to Secondary Organic Aerosol. Aerosol Sci. Technol., 46:937–949. doi:10.1080/02786826.2012.683204.
  • McGraw, R., and Saunders, J.H. (1984). A Condensation Feedback Mechanism for Oscillatory Nucleation and Growth. Aerosol Sci. Technol., 3:367–380. doi:10.1080/02786828408959025.
  • Mentel, T.F., Wildt, J., Kiendler-Scharr, A., Kleist, E., Tillmann, R., Dal Maso, M., et al. (2009). Photochemical Production of Aerosols from Real Plant Emissions. Atmos. Chem. Phys., 9:4387–4406.
  • Pöschl, U., Martin, S.T., Sinha, B., Chen, Q., Gunthe, S.S., Huffman, J.A., et al. (2010). Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon. Science, 329:1513–1516.
  • Renbaum-Wolff, L., Grayson, J.W., Bateman, A.P., Kuwata, M., Sellier, M., Murray, B.J., et al. (2013). Viscosity of α-Pinene Secondary Organic Material and Implications for Particle Growth and Reactivity. Proc. Natl. Acad. Sci., 110:8014–8019. doi:10.1073/pnas.1219548110.
  • Seinfeld, J.H., Kleindienst, T.E., Edney, E.O., and Cohen, J.B. (2003). Aerosol Growth in a Steady-State, Continuous Flow Chamber: Application to Studies of Secondary Aerosol Formation. Aerosol Sci. Technol., 37:728–734.
  • Seinfeld, J.H., and Pandis, S.N. (2006). Atmospheric Chemistry and Physics. Wiley, New York.
  • Shilling, J.E., Chen, Q., King, S.M., Rosenoern, T., Kroll, J.H., Worsnop, D.R., et al. (2008). Particle Mass Yield in Secondary Organic Aerosol Formed by the Dark Ozonolysis of Alpha-Pinene. Atmos. Chem. Phys., 8:2073–2088.
  • Shiraiwa, M., Yee, L.D., Schlling, K.A., Loza, C.L., Craven, J.S., Zuend, A., et al. (2013). Size Distribution Dynamics Reveal Particle-Phase Chemistry in Organic Aerosol Formation. Proc. Natl. Acad. Sci.110(29):11746–11750.
  • Shrestha, M., Zhang, Y., Ebben, C.J., Martin, S.T., and Geiger, F.M. (2013). Vibrational Sum Frequency Generation Spectroscopy of Secondary Organic Material Produced by Condensational Growth from α-Pinene Ozonolysis. J. Phys. Chem. A, 117:8427–8436. doi:10.1021/jp405065d.
  • Smith, M.L., Bertram, A.K., and Martin, S.T. (2012). Deliquescence, Efflorescence, and Phase Miscibility of Mixed Particles of Ammonium Sulfate and Isoprene-Derived Secondary Organic Material. Atmos. Chem. Phys., 12:9613–9628. doi:10.5194/acp-12-9613-2012.
  • Smith, M.L., Kuwata, M., and Martin, S.T. (2011). Secondary Organic Material Produced by the Dark Ozonolysis of Alpha-Pinene Minimally Affects the Deliquescence and Efflorescence of Ammonium Sulfate. Aerosol Sci. Technol., 45:244–261. doi:10.1080/02786826.2010.532178.
  • Smith, M.L., You, Y., Kuwata, M., Bertram, A.K., and Martin, S.T. (2013). Phase Transitions and Phase Miscibility of Mixed Particles of Ammonium Sulfate, Toluene-Derived Secondary Organic Material, and Water. J. Phys. Chem. A, 117:8895–890. doi:10.1021/jp405095e.
  • Swietlicki, E., Hansson, H.C., Hameri, K., Svenningsson, B., Massling, A., McFiggans, G., et al. (2008). Hygroscopic Properties of Submicrometer Atmospheric Aerosol Particles Measured with H-TDMA Instruments in Various Environments - A Review. Tellus B, 60:432–469. doi:10.1111/j.1600-0889.2008.00350.x.
  • You, Y., Renbaum-Wolff, L., Carreras-Sospedra, M., Hanna, S.J., Hiranuma, N., Kamal, S., et al. (2012). Images Reveal That Atmospheric Particles Can Undergo Liquid–liquid Phase Separations. Proc. Natl. Acad. Sci., 109:13188–13193. doi:10.1073/pnas.1206414109.
  • Zhang, Q., Jimenez, J.L., Canagaratna, M.R., Allan, J.D., Coe, H., Ulbrich, I., et al. (2007). Ubiquity and Dominance of Oxygenated Species in Organic Aerosols in Anthropogenically-Influenced Northern Hemisphere Midlatitudes. Geophys. Res. Lett., 34:L13801. doi:10.1029/2007gl029979.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.