2,648
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of Particle Transport and Deposition of Micron-Sized Particles in a 90° Bend Using a Two-Fluid Eulerian–Eulerian Approach

, &
Pages 692-704 | Received 30 Oct 2014, Accepted 03 Jun 2015, Published online: 25 Jul 2015

REFERENCES

  • Ansys, Inc. (2009). Ansys FLUENT 12.0 Theory Guide. Ansys, Inc., Canonsburg, PA.
  • Armand, P., Boulaud, D., Pourprix, M., and Vendel, J. (1998). Two-Fluid Modeling of Aerosol Transport in Laminar and Turbulent Flows. J. Aerosol Sci., 29:961–983.
  • Balashazy, I., Alfoldy, B., Molnar, A. J., Hofmann, W., Szoke, I., and Kis, E. (2007). Aerosol Drug Delivery Optimization by Computational Methods for the Characterization of Total and Regional Deposition of Therapeutic Aerosols in the Respiratory System. Curr. Comput. Aid. Drug, 3:13–32.
  • Barth, T. J., and Jespersen, D. C. (1989). The Design and Application of Upwind Schemes on Unstructured Meshes. AIAA Paper No. AIAA-89-0366. American Institute of Aeronautics and Astronautics, Reston, VA.
  • Best, J. P., Yan, Y., and Caruso, F. (2012). The Role of Particle Geometry and Mechanics in the Biological Domain. Adv. Healthc. Mater., 1:35–47.
  • Breuer, M., Baytekin, H. T., and Matida, E. A. (2006). Prediction of Aerosol Deposition in 90{Ring Operator} Bends Using LES and an Efficient Lagrangian Tracking Method. J. Aerosol Sci., 37:1407–1428.
  • Cheng, Y. S., and Wang, C. S. (1981). Motion of Particles in Bends of Circular Pipes. Atmos. Environ., 15:301–306.
  • Dehbi, A. (2011). Prediction of Extrathoracic Aerosol Deposition Using RANS-Random Walk and LES Approaches. Aerosol Sci. Technol., 45:555–569.
  • Gao, R., and Li, A. (2012). Dust Deposition in Ventilation and Air-Conditioning Duct Bend Flows. Energy Convers. Manage., 55:49–59.
  • Hofmann, W. (1996). Modeling Techniques for Inhaled Particle Deposition: The State of the Art. J. Aerosol Med., 9:369–388.
  • Hofmann, W., Golser, R., and Balashazy, I. (2003). Inspiratory Deposition Efficiency of Ultrafine Particles in a Human Airway Bifurcation Model. Aerosol Sci. Technol., 37:988–994.
  • Jiang, H., Lu, L., and Sun, K. (2011). Experimental Study and Numerical Investigation of Particle Penetration and Deposition in 90° Bent Ventilation Ducts. Build. Environ., 46:2195–2202.
  • Longest, P. W., and Oldham, M. J. (2008). Numerical and Experimental Deposition of Fine Respiratory Aerosols: Development of a Two-Phase Drift Flux Model with Near-Wall Velocity Corrections. J. Aerosol Sci., 39:48–70.
  • McFarland, A. R., Gong, H., Muyshondt, A., Wente, W. B., and Anand, N. K. (1997). Aerosol Deposition in Bends with Turbulent Flow. Environ. Sci. Technol., 31:3371–3377.
  • McMurry, P. H. (2000). A Review of Atmospheric Aerosol Measurements. Atmos. Environ., 34:1959–1999.
  • Mohanarangam, K., Tian, Z. F., and Tu, J. Y. (2008). Numerical Simulation of Turbulent Gas-Particle Flow in a 90° Bend: Eulerian–Eulerian Approach. Comput. Chem. Eng., 32:561–571.
  • Morsi, S. A., and Alexander, A. J. (1972). An Investigation of Particle Trajectories in Two-Phase Flow Systems. J. Fluid Mech., 55:193–208.
  • Nalwa, H. S. (2004). Encyclopedia of Nanoscience and Nanotechnology. American Scientific Publishers, Stevenson Ranch, CA.
  • Oldham, M. J., Phalen, R. F., and Heistracher, T. (2000). Computational Fluid Dynamic Predictions and Experimental Results for Particle Deposition in an Airway Model. Aerosol Sci. Technol., 32:61–71.
  • Patankar, S. V., and Spalding, D. B. (1972). A Calculation Procedure for Heat, Mass, and Momentum Transfer in Three-Dimensional Parabolic Flows. Int. J. Heat Mass Transfer, 15:1787–1806.
  • Peters, T. M., and Leith, D. (2004a). Measurement of Particle Deposition in Industrial Ducts. J. Aerosol Sci., 35:529–540.
  • Peters, T. M., and Leith, D. (2004b). Modeling Large-Particle Deposition in Bends of Exhuast Ventilation Systems. Aerosol Sci. Technol., 38:1171–1177.
  • Peters, T. M., and Leith, D. (2004c). Particle Deposition in Industrial Duct Bends. Ann. Occup. Hyg., 48:483–490.
  • Pilou, M. (2012). Investigation of Interactions Between Particles and Flowing Biofluids. Ph.D. thesis. National University of Athens, Athens, Greece.
  • Pilou, M., Antonopoulos, V., Makris, E., Neofytou, P., Tsangaris, S., and Housiadas, C. (2013). A Fully Eulerian Approach to Particle Inertial Deposition in a Physiologically Realistic Bifurcation. Appl. Math. Modell., 37:5591–5605.
  • Pilou, M., Tsangaris, S., Neofytou, P., Housiadas, C., and Drossinos, Y. (2011). Inertial Particle Deposition in a 90 Laminar Flow Bend: An Eulerian Fluid Particle Approach. Aerosol Sci. Technol., 45:1376–1387.
  • Pui, D. Y. H., Romay-Novas, F., and Liu, B. Y. H. (1987). Experimental Study of Particle Deposition in Bends of Circular Cross Section. Aerosol Sci. Technol., 7:301–315.
  • Rhie, C. M., and Chow, W. L. (1983). Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation. AIAA J., 21:1525–1532.
  • Shi, H., Kleinstreuer, C., and Zhang, Z. (2007). Modeling of Inertial Particle Transport and Deposition in Human Nasal Cavities with Wall Roughness. J. Aerosol Sci., 38:398–419.
  • Slater, S. A., and Young, J. B. (2001). The Calculation of Inertial Particle Transport in Dilute Gas-Particle Flows. Int. J. Multiphase Flow, 27:61–87.
  • Sun, K., Lu, L., and Jiang, H. (2011). A Computational Investigation of Particle Distribution and Deposition in a 90° Bend Incorporating a Particle–Wall Model. Build. Environ., 46:1251–1262.
  • Torres Galvis, H. M., Bitter, J. H., Khare, C. B., Ruitenbeek, M., Dugulan, A. I., and de Jong, K. P. (2012). Supported Iron Nanoparticles as Catalysts for Sustainable Production of Lower Olefins. Science, 335:835–838.
  • Tsai, C.-J., and Pui, D. Y. H. (1990). Numerical Study of Particle Deposition in Bends of a Circular Cross-Section-Laminar Flow Regime. Aerosol Sci. Technol., 12:813–831.
  • Walters, D. K., Burgreen, G. W., Lavallee, D. M., Thompson, D. S., and Hester, R. L. (2011). Efficient, Physiologically Realistic Lung Airflow Simulations. IEEE Trans. Biomed. Eng., 58:3016–3019.
  • Walters, D. K., and Luke, W. H. (2010). A Method for Three-Dimensional Navier-Stokes Simulations of Large-Scale Regions of the Human Lung Airway. ASME J. Fluid Eng., 132:051101.
  • Walters, D. K., and Luke, W. H. (2011). Computational Fluid Dynamics Simulations of Particle Deposition in Large-Scale, Multi-Generational Lung Models. ASME J. Biomech. Eng., 133:011003.
  • Xi, J., and Longest, P. W. (2008a). Numerical Predictions of Submicrometer Aerosol Deposition in the Nasal Cavity Using a Novel Drift Flux Approach. Int. J. Heat Mass Transfer, 51:5562–5577.
  • Xi, J., and Longest, P. W. (2008b). Evaluation of a Drift Flux Model for Simulating Submicrometer Aerosol Dynamics in Human Upper Tracheobronchial Airways. Ann Biomed Eng., 36:1714–1734.
  • Zhang, P., Roberts, R. M., and Bénard, A. (2012). Computational Guidelines and an Empirical Model for Particle Deposition in Curved Pipes Using an Eulerian–Lagrangian Approach. J. Aerosol Sci., 53:1–20.
  • Zhang, Y., Finlay, W. H., and Matida, E. A. (2004). Particle Deposition Measurements and Numerical Simulation in a Highly Idealized Mouth–Throat. J. Aerosol Sci., 35:789–803.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.