854
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of DMA Size Selection of Dry Dispersed Mineral Dust Particles

, , , &
Pages 828-841 | Received 27 Jan 2015, Accepted 08 Jul 2015, Published online: 17 Aug 2015

REFERENCES

  • Archuleta, C. M., DeMott, P. J., and Kreidenweis, S. M. (2005). Ice Nucleation by Surrogates for Atmospheric Mineral Dust and Mineral Dust/Sulfate Particles at Cirrus Temperatures. Atmos. Chem. Phys., 5:2617–2634.
  • Ardon-Dryer, K., and Levin, Z. (2014). Ground Based Measurements of Immersion Freezing in the Eastern Mediterranean. Atmos. Chem. Phys., 14:5217–5231.
  • Barthelmy, D. (2014). Montmorillonite Mineralogy Database. Available at: http://webmineral.com/data/Montmorillonite.shtml#.VJg0Ul4C8.
  • BMI. (2012a). Brechtel Manufacturing Incorporated Model 2002 Scanning Electrical Mobility System Manual, Version 5.5. Brechtel Manufacturing Inc., Hayward, CA.
  • BMI. (2012b). Brechtel Manufacturing Incorporated Model 9203 Aerosol Generation System. Brechtel Manufacturing Inc., Hayward, CA.
  • Bundke, U., Nillius, B., Jaenicke, R., Wetter, T., Klein, H., and Bingemer, H. (2008). The Fast Ice Nucleus Chamber FINCH. Atmos. Res., 90:180–186.
  • Cicel, B., and Kranz, G. (1981). Mechanism of Montmorillonite Structure Degradation by Percussive Grinding. Clay Min., 16:151–162.
  • Curtis, D. B., Meland, B., Aycibin, M., Arnold, N. P., Grassian, V. H., Young, M. A., and Kleiber, P. D. (2008). A Laboratory Investigation of Light Scattering from Representative Components of Mineral Dust Aerosol at a Wavelength of 550 nm. J. Geophys. Res., 113:D08210, doi:10.1029/2007JD009387.
  • Cziczo, D. J., Froyd, K. D., Gallavardin, S. J., Möhler, O., Benz, S., Saathoff, H., and Murphy, D. M. (2009). Deactivation of Ice Nuclei Due to Atmospherically Relevant Surface Coatings. Environ. Res. Lett., 4:044013, doi:10.1088/1748-9326/4/4/044013.
  • Cziczo, D. J., Froyd, K. D., Hoose, C., Jensen, E. J., Diao, M., Zondlo, M. A., Smith, J. B., Twohy, C. H., and Murphy, D. M. (2013). Clarifying the Dominant Sources and Mechanisms of Cirrus Cloud Formation. Science, 340:1320 doi: 10.1126/science.1234145.
  • Cziczo, D. J., Thomson, D. S., Thompson, T., DeMott, P. J., and Murphy, D. M. (2006). Aerosol Mass Spectrometry Studies of Ice Nuclei and Other Low Number Density Particles. Int. J. Mass Spectrom., 258:21–31.
  • DeCarlo, P. F., Slowik, J. G., Worsnop, D. R., Davidovits, P., and Jimenez, J. L. (2004). Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 1: Theory. Aerosol Sci. Tech., 38:1185–1205.
  • Egan, W. G., and Hilgeman, T. W. (1979). Optical Properties of Inhomogeneous Materials. Academic Press, San Diego, CA, p. 235.
  • Endo, Y., Chen, D., and Pui, D. Y. H. (1998). Effects of Particle Polydispersity and Shape Factor during Dust Cake Loading on Air Filters. Powder Technol., 98:241–249.
  • Forsyth, B., Liu, B. Y. H., and Francisco, J. R. (1998). Particle Charge Distribution Measurement for Commonly Generated Laboratory Aerosols. Aerosol Sci. Technol., 28(6):489–501.
  • Garimella, S., Huang, Y. W., Seewald, J. S., and Cziczo, D. J. (2014). Cloud Condensation Nucleus Activity Comparison of Dry- and Wet-Generated Mineral Dust Aerosol: The Significance of Soluble Material. Atmos. Chem. Phys., 14:6003–6019.
  • Glen, A., and Brooks, S. D. (2013). A New Method for Measuring Optical Scattering Properties of Atmospherically Relevant Dusts Using the Cloud and Aerosol Spectrometer with Polarization (CASPOL). Atmos. Chem. Phys., 13:1345–1356.
  • Gunn, R. (1956). The Ratio of the Positive and Negative Light Ion Conductivities within a Neutral Aerosol Space. J. Colloid. Sci., 11:691–696.
  • Heintzenberg, J., Okada, K., and Luo, B. P. (2002). Distribution of Optical Properties among Atmospheric Submicrometer Particles of Given Electrical Mobilities. J. Geophys. Res., 107:D11,4107, doi:10.1029/2001JD000372.
  • Herich, H., Tritscher, T., Wiacek, A., Gysel, M., Weingartner, E., Lohmann, U., Baltensperger, U., and Cziczo, D. J. (2009). Water Up Take of Clay and Desert Dust Aerosol Particles at Sub- and Supersaturated Water Vapor Conditions. Phys. Chem. Chem. Phys., 11:7804–7809.
  • Hewitt, G. S. (1957). The Charging of Small Particles for Electrostatic Precipitation. Trans. Am. Inst. Elect. Eng., 76:300–306.
  • Hinds, W. C. (1982). Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. John Wiley, New York, p. 504.
  • Hoose, C., and Möhler, O. (2012). Heterogeneous Ice Nucleation on Atmospheric Aerosols: A Review of Results from Laboratory Experiments. Atmos. Chem. Phys., 12:9817–9854.
  • Hudson, P. K., Gibson, E. R., Young, M. A., Kleiber, P. D., and Grassian, V. H. (2008). Coupled Infrared Extinction and Size Distribution Measurements for Several Clay Components of Mineral Dust Aerosol. J. Geophys. Res., 113:D01201, doi:10.1029/2007JD008791.
  • Hung, H.-M., Malinowski, A., and Martin, S. T. (2003). Kinetics of Heterogeneous Ice Nucleation on the Surfaces of Mineral Dust Cores Inserted into Aqueous Ammonium Sulfate Particles. J. Phys. Chem. A., 107(9):1296–1306.
  • Intra, P., and Tippayawong, N. (2008). An Overview of Differential Mobility Analyzers for Size Classification of Nanometer-Sized Aerosol Particles. Songklanakarin J. Sci. Technol., 30(2):243–256.
  • Jones, H. M., Flynn, M. J., DeMott, P. J., and Möhler, O. (2011). Manchester Ice Nucleus Counter (MINC) Measurements from the 2007 International Workshop on Comparing Ice Nucleation Measuring Systems (ICIS-2007). Atmos. Chem. Phys., 11:53–65.
  • Kaaden, N., Massling, A., Schladitzi, A., Müller, T., Kadler, K., Schütz, L., Weinzierl, B., Petzold, A., Tesche, M., Leinert, S., and Deutscher, C. (2009). State of Mixing, Shape Factor, Number Size Distribution, and Hygroscopic Growth of the Saharan Anthropogenic and Mineral Dust Aerosol at Tinfou. Morocco. Tellus., 61(1):51–63.
  • Kanji, Z. A., and Abbatt, J. P. D. (2006). Laboratory Studies of Ice Formation via Deposition Mode Nucleation onto Mineral Dust and n-Hexane Soot Samples. J. Geophys. Res. Atmos., 111:D16204, doi:10.1029/2005JD006766.
  • Kanji, Z. A., DeMott, P. J., Möhler, O., and Abbatt, J. P. D. (2011). Results from the University of Toronto Continuous Flow Diffusion Chamber at ICIS 2007: Instrument Intercomparison and Ice Onsets for Different Aerosol Types. Atmos. Chem. Phys., 11:31–41.
  • Kanji, Z. A., Florea, O., and Abbatt, J. P. D. (2008). Ice Formation via Deposition Nucleation on Mineral Dust and Organics: Dependence of Onset Relative Humidity on Total Particulate Surface Area. Environ. Res. Lett., 3:025004, doi:10.1088/1748-9326/3/2/025004.
  • Kanji, Z. A., Welti, A., Chou, C., Stetzer, O., and Lohmann, U. (2013). Laboratory Studies of Immersion and Deposition Mode Ice Nucleation of Ozone Aged Mineral Dust Particles. Atmos. Chem. Phys., 13:9097–9118.
  • Kim, S. H., Woo, K. S., Liu, B. Y. H., and Zachariah, M. R. (2005). Method of Measuring Charge Distribution of Nanosized Aerosols. J. Colloid Interface Sci., 282:46–57.
  • Knutson, E. O., and Whitby, K. T. (1975). Aerosol Classification by Electric Mobility: Apparatus, Theory, and Applications. J. Aerosol Sci., 6:443–451.
  • Koehler, K. A., Kreidenweis, S. M., DeMott, P. J., Petters, M. D., Prenni, A. J., and Carrico, C. M. (2009). Hygroscopicity and Cloud Droplet Activation of Mineral Dust Aerosol. Geophys. Res. Lett., 36:L08805, doi:10.1029/2009gl037348.
  • Koehler, K. A., Kreidenweis, S. M., DeMott, P. J., Petters, M. D., Prenni, A. J., and Möhler, O. (2010). Laboratory Investigations of the Impact of Mineral Dust Aerosol on Cold Cloud Formation. Atmos. Chem. Phys., 10:11955–11968.
  • Kulkarni, P., Baron, P. A., and Willeke, K. (2011). Aerosol Measurement: Principles, Techniques, and Applications. John Wiley, Hoboken, NJ, p. 829.
  • Kumar, P., Sokolik, I. N., and Nenes, A. (2011). Measurements of Cloud Condensation Nuclei Activity and Droplet Activation Kinetics of Fresh Unprocessed Regional Dust Samples and Minerals. Atmos. Chem. Phys., 11:3527–3541.
  • Kuwata, M., and Kondo, Y. (2009). Measurements of Particle Masses of Inorganic Salt Particles for Calibration of Cloud Condensation Nuclei Counters. Atmos. Chem. Phys., 9:5921–5932.
  • Ladino, L., Stetzer, O., Lüönd, F., Welti, A., and Lohmann, U. (2011). Contact Freezing Experiments of Kaolinite Particles with Cloud Droplets. J. Geophys. Res., 116:D22202, doi:10.1029/2011JD015727.
  • Ladino, L. A., and Abbatt, J. P. D. (2013). Laboratory Investigation of Martian Water Ice Cloud Formation Using Dust Aerosol Simulants. J. Geophys. Res. Planets., 118:14–25.
  • Lafon, S., Sokolik, I. N., Rajot, J. L., Caquineau, S., and Gaudichet, A. (2006). Characterization of Iron Oxides in Mineral Dust Aerosols: Implications for Light Absorption. J. Geophys. Res.-Atmos., 111:D21207, doi:10.1029/2005jd007016.
  • Liu, B. Y. H., and Pui, D. Y. H. (1974). Equilibrium Bipolar Charge Distribution of Aerosols. J. Colloid Interface Sci., 49:305–312.
  • Lohmann, U., and Diehl, K. (2006). Sensitivity Studies of the Importance of Dust Ice Nuclei for the Indirect Aerosol Effect on Stratiform Mixed-Phase Clouds. J. Atmos. Sci., 63:968–982.
  • Lüönd, F., Stetzer, O., Welti, A., and Lohmann, U. (2010). Experimental Study on the Ice Nucleation Ability of Size-Selected Kaolinite Particles in the Immersion Mode. J. Geophys. Res., 115:D14201, doi:10.1029/2009JD012959.
  • Marcolli, C., Gedamke, S., Peter, T., and Zobrist, B. (2007). Efficiency of Immersion Mode Ice Nucleation on Surrogates of Mineral Dust. Atmos. Chem. Phys., 7:5081–5091.
  • Möhler, O., Benz, S., Saathoff, H., Schnaiter, M., Wagner, R., Schneider, J., Walter, S., Ebert, V., and Wagner, S. (2008). The Effect of Organic Coating on the Heterogeneous Ice Nucleation Efficiency of Mineral Dust Aerosol. Environ. Res. Lett., 3:025007, doi:10.1088/1748-9326/3/2/025007.
  • Murphy, D. M., and Thomson, D. S. (1995). Laser Ionization Mass Spectroscopy of Single Aerosol Particles. Aerosol. Sci. Tech., 22:237–249.
  • Niedermeier, D., Hartmann, S., Shaw, R. A., Covert, D., Mentel, T. F., Schneider, J., Poulain, L., Reitz, P., Spindler, C., Clauss, T., Kiselev, A., Hallbauer, E., Wex, H., Mildenberger, K., and Stratmann, F. (2010). Heterogeneous Freezing of Droplets with Immersed Mineral Dust Particles—Measurements and Parameterization. Atmos. Chem. Phys., 10:3601–3614.
  • Niedermeier, D., Shaw, R. A., Hartmann, S., Wex, H., Clauss, T., Voigtländer, J., and Stratmann, F. (2011). Heterogeneous Ice Nucleation: Exploring the Transition from Stochastic to Singular Freezing Behavior. Atmos. Chem. Phys., 11:8767–8775.
  • Okada, K., Heintzenberg, J., Kai, K., and Qin, Y. (2001). Shape of Atmospheric Mineral Particles Collected in Three Chinese Arid-Regions. J. Geophys. Res., 28:3123–3126.
  • Reid, E. A., Reid, J. S., Meier, M. M., Dunlap, M. R., Cliff, S. S., Broumas, A., Perry, K., and Maring, H. (2003). Characterization of African Dust Transported to Puerto Rico by Individual Particle and Size Segregated Bulk Analysis. J. Geophys. Res., 108:D19, 8591, doi:10.1029/2002JD002935.
  • Rosenfeld, D., Rudich, Y., and Lahav, R. (2001). Desert Dust Suppressing Precipitation: A Possible Desertification Feedback Loop. Proc. Natl. Acad. Sci., 98:5975–5980.
  • Salam, A., Lesins, G., and Lohmann, U. (2008). Laboratory Study of Heterogeneous Ice Nucleation in Deposition Mode of Montmorillonite Mineral Dust Particles Aged with Ammonia, Sulfur Dioxide, and Ozone at Polluted Atmospheric Concentrations. Air Qual. Atmos. Health., 1:135–142.
  • Sullivan, R. C., Moore, M. J. K., Petters, M. D., Kreidenweis, S. M., Roberts, G. C., and Prather, K. A. (2009). Effect of Chemical Mixing State on the Hygroscopicity and Cloud Nucleation Properties of Calcium Mineral Dust Particles. Atmos. Chem. Phys., 9:3303–3316.
  • Sullivan, R. C., Petters, M. D., DeMott, P. J., Kreidenweis, S. M., Wex, H., Niedermeier, D., Hartmann, S., Clauss, T., Stratmann, F., Reitz, P., Schneider, J., and Sierau, B. (2010). Irreversible Loss of Ice Nucleation Active Sites in Mineral Dust Particles Caused by Sulphuric Acid Condensation. Atmos. Chem. Phys., 10:11471–11487.
  • TSI. (2012). Optical Particle Sizer Model 3330 Manual, 6th ed. Trust Science Innovation, Shoreview, MN.
  • Twohy, C. H., Kreidenweis, S. M., Eidhammer, T., Browell, E. V., Heymsfield, A. J., Bansemer, A. R., Anderson, B. E., Chen, G., Ismail, S., DeMott, P. J., and Van Den Heever, S. C. (2009). Saharan Dust Particles Nucleate Droplets in Eastern Atlantic Clouds. Geophys. Res. Lett., 36:L01807, doi: 10.1029/2008GL035846.
  • Veghte, D. P., and Freedman, M. A. (2012). The Necessity of Microscopy to Characterize the Optical Properties of Size-Selected, Nonspherical Aerosol Particle. Anal. Chem., 84:9101–9108.
  • Vlasenko, A., Sjogren, S., Weingartner, E., Stemmler, K., Gäggeler, H. W., and Ammann, M. (2006). Effect of Humidity on Nitric Acid Uptake to Mineral Dust Aerosol Particles. Atmos. Chem. Phys., 6:2147–2160.
  • Wallace, J. M., and Hobbs, P. V. (2006). Atmospheric Science: An Introductory Science, 2nd ed. Academic Press, Oxford, p. 504.
  • Welti, A., Lüönd, F., Stetzer, O., and Lohmann, U. (2009). Influence of Particle Size on the Ice Nucleating Ability of Mineral Dusts. Atmos. Chem. Phys., 9:6705–6715.
  • Wheeler, M. J., and Bertram, A. K. (2012). Deposition Nucleation on Mineral Dust Particles: A Case against Classical Nucleation Theory with the Assumption of a Single Contact Angle. Atmos. Chem. Phys., 12:1189–1201.
  • Wiedensohler, A. (1988). An Approximation of the Bipolar Charge Distribution for Particles in the Submicron Size Range. J. Aerosol Sci., 19:387–389.
  • Zimmermann, F., Ebert, M., Worringen, A., Schütz, L., and Weinbruch, S. (2007). Environmental Scanning Electron Microscopy (ESEM) as a New Technique to Determine the Ice Nucleation Capability of Individual Atmospheric Aerosol Particles. Atmos. Environ., 41:8219–8227.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.