1,626
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Design and Testing of the NCTU Micro-Orifice Cascade Impactor (NMCI) for the Measurement of Nanoparticle Size Distributions

, , , , &
Pages 1009-1018 | Received 16 Jul 2015, Accepted 30 Aug 2015, Published online: 24 Sep 2015

REFERENCES

  • Arffman, A., Marjamäki, M., and Keskinen, J. (2011). Simulation of Low Pressure Impactor Collection Efficiency Curves. J. Aerosol Sci., 42:329–340.
  • Berner, A., Lürzer, C., Pohl, F., Preining, O., and Wagner, P. (1979). The Size Distribution of the Urban Aerosol in Vienna. Sci. Total Environ., 13:245–261.
  • Biswas, P., and Flagan, R. C. (1984). High-velocity Inertial Impactors. Environ. Sci. Technol., 18:611–616.
  • Canepari, S., Padella, F., Astolfi, M. L., Marconi, E., and Perrino, C. (2013). Elemental Concentration in Atmospheric Particulate Matter: Estimation of Nanoparticle Contribution. Aerosol Air Qual. Res., 13:1619–1629.
  • Chang, M., Kim, S., and Sioutas, C. (1999). Experimental Studies on Particle Impaction and Bounce: Effects of Substrate Design and Material. Atmos. Environ., 33:2313–2322.
  • Chaun, R. L. (1970). An Instrument for the Direct Measurement of Particulate Mass. J. Aerosol Sci., 1:111–114.
  • Chen, S. C., Tsai, C. J., Chou, C. C. K., Roam, G. D., Cheng, S. S., and Wang, Y. N. (2010). Ultrafine Particles at Three Different Sampling Locations in Taiwan. Atmos. Environ., 44:533–540.
  • Chen, S. C., Tsai, C. J., Chen, H. D., Huang, C. Y., and Roam, G. D. (2011). The Influence of Relative Humidity on Nanoparticle Concentration and Particle Mass Distribution Measurements by the MOUDI. Aerosol Sci. Technol., 45:596–603.
  • Chen, S. C., Hsu, S. C., Tsai, C. J., Chou, C. C. K., Lin, N. H., Lee, C. T., Roam, G. D., and Pui, D. Y. H. (2013). Dynamic Variations of Ultrafine, Fine and Coarse Particles at the Lu-Lin Background Site in East Asia. Atmos. Environ., 78:154–162.
  • Chow, J. C., and Watson, J. G. (2007). Review of Measurement Methods and Compositions for Ultrafine Particles. Aerosol Air Qual. Res., 7:121–173.
  • Fang, C. P., Marple, V. A., and Rubow, K. L. (1991). Influence of Cross-flow on Particle Collection Characteristics of Multi-Nozzle Impactors. J. Aerosol Sci., 22:403–415.
  • Fang, G. C., Chang, C. Y., Tsai, J. H., and Lin, C. C. (2014). The Size Distributions of Ambient Air Metallic Pollutants by Using a Multi-Stage MOUDI Sampler. Aerosol Air Qual. Res., 14:970–980.
  • Flagan, R. C. (1982). Compressible Flow Inertial Impactors. J. Colloid Interf. Sci., 87:291–299.
  • Fried, E., and Idelchik, I. E. (1989). Flow Resistance: A Design Guide for Engineers, Hemisphere Publishing Corp., New York.
  • Gudmundsson, A., Bohgard, M., and Hansson, H. C. (1995). Characteristics of Multi-Nozzle Impactors with 50 μm Laser-Drilled Nozzles. J. Aerosol Sci., 26:915–931.
  • Gulijk, C. V., Marijnissen, J. C. M., Makkee, M., and Moulijn, J. A. (2003). Oil-Soaked Sintered Impactors for the ELPI in Diesel Particulate Measurements. J. Aerosol Sci., 34:635–640.
  • Hering, S. V. (1987). Calibration of the QCM Impactor for Stratospheric Sampling. Aerosol Sci. Technol., 7:257–274.
  • Hillamo, R. E., and Kauppinen, E. I. (1991). On the Performance of the Berner Low Pressure Impactor. Aerosol Sci. Technol., 14:33–47.
  • Huang, C. H., and Tsai, C. J. (2001). Effect of Gravity on Particle Collection Efficiency of Inertial Impactors. J. Aerosol Sci., 32:375–387.
  • Huang, C. H., Tsai, C. J., and Shih, T. S. (2001). Particle Collection Efficiency of an Impactor with Porous Metal Substrates. J. Aerosol Sci., 32:1035–1044.
  • Huang, C. H., and Tsai, C. J. (2002). Influence of Impaction Plate Diameter and Particle Density on Collection Efficiency of Round-Nozzle Inertial Impactors. Aerosol Sci. Technol., 36:714–720.
  • Huang, C. H., and Tsai, C. J. (2003). Mechanism of Particle Impaction and Filtration by the Porous Metal Substrate of an Inertial Impactor. Aerosol Sci. Technol., 37:486–493.
  • Huang, C. H., Chang, C. S., Chang, S. H., Tsai, C. J., Shih, T. S., and Tang, D. T. (2005). Use of Porous Foam as the Substrate of an Impactor for Respirable Aerosol Sampling. J. Aerosol Sci., 36:1373–1386.
  • Ji, J. H., Bae, G. N., and Hwang, J. (2006). Observation and Evaluation of Nozzle Clogging in a Micro-Orifice Impactor Used for Atmospheric Aerosol Sampling. Particul. Sci. Technol., 24:85–96.
  • Keskinen, J., Pietarinen, K., and Lehtimaki, M. (1992). Electrical Low Pressure Impactor. J. Aerosol Sci., 23:353–360.
  • Kim, P. R., Han, Y. J., Holsen, T. M., and Yi, S. M. (2012). Atmospheric Particulate Mercury: Concentrations and Size Distributions. Atmos. Environ., 61:94–102.
  • Kudo, S., Sekiguchi, K., Kim, K. H., Kinoshita, M., Möller, D., Wang, Q., Yoshikado, H., and Sakamoto, K. (2012). Differences of Chemical Species and Their Ratios Between Fine and Ultrafine Particles in the Roadside Environment. Atmos. Environ., 62:172–179.
  • Kwon, S. B., Kim, M. C., and Lee, K. W. (2002). Effects of Jet Configuration on the Performance of Multi-Nozzle Impactors. J. Aerosol Sci., 33:859–869.
  • Li, Y. P., Zhang, H. F., Qiu, X. H., Zhang, Y. R., and Wang, H. R. (2013). Dispersion and Risk Assessment of Bacterial Aerosols Emitted from Rotating-Brush Aerator During Summer in a Wastewater Treatment Plant of Xi'an, China. Aerosol Air Qual. Res., 13:1807–1814.
  • Lin, C. C., Huang, K. L., Chen, H. L., Tsai, J. H., Chiu, Y. P., Lee, J. T., and Chen, S. J. (2014). Influences of Beehive Firework Displays on Ambient Fine Particles During the Lantern Festival in the YanShuei Area of Southern Taiwan. Aerosol Air Qual. Res., 14:1998–2009.
  • Liu, C. N., Chen, S. C., and Tsai, C. J. (2011). A Novel Multi-Filter PM10–PM2.5 Sampler (MFPPS). Aerosol Sci. Technol., 45:1480–1487.
  • Liu, C. N., Awasthi, A., Hung, Y. H., and Tsai, C. J. (2013). Collection Efficiency and Interstage Loss of Nanoparticles in Micro-Orifice-Based Cascade Impactors. Atmos. Environ., 69:325–333.
  • Marple, V. A. (1970). A Fundamental Study of Inertial Impactors. Ph.D. thesis, Univ. of Minnesota, MN.
  • Marple, V. A., and Liu, B. Y. H. (1974). Characteristics of Laminar Jet Impactors. Environ. Sci. Technol., 8:648–654.
  • Marple, V. A., and Willeke, K. (1976). Impactor Design. Atmos. Environ., 10:891–896.
  • Marple, V. A., Rubow, K. L., and Behm, S. M. (1991). A Microorifice Uniform Deposit Impactor (MOUDI): Description, Calibration and Use. Aerosol Sci. Technol., 14:434–446.
  • Marple, V. A.. and Olson, B. A. (2011). Sampling and Measurement Using Inertial, Gravitational, Centrifugal and Thermal Techniques, Chapter 8, Aerosol Measurement: Principles, Techniques and Applications, Third Edition, P. Kulkarni, P. A. Baron, and K. Willeke, eds., John Wiley & Sons, Inc., Hoboken, NJ.
  • Marple, V., Olson, B., Romay, F., Hudak, G., Geerts, M. S., and Lundgren, D. (2014). Second Generation Micro-Orifice Uniform Deposit Impactor, 120 MOUDI-II: Design, Evaluation, and Application to Long-Term Ambient Sampling. Aerosol Sci. Technol., 48:427–433.
  • Pak, S. S., Liu, B. Y. H., and Rubow, K. L. (1992). Effect of Coating Thickness on Particle Bounce in Inertial Impactors. Aerosol Sci. Technol., 16:141–150.
  • Peters, T. M., Vanderpool, R. W., and Wiener, R. W. (2001). Design and Calibration of the EPA PM2.5 Well Impactor Ninety-Six (WINS). Aerosol Sci. Technol., 34:389–397.
  • Rader, J. D., and Marple, V. A. (1985). Effect of Ultra-Stokesian Drag and Particle Interception on Impaction Characteristics. Aerosol Sci. Technol., 4:141–156.
  • Reischl, G. P., and John, W. (1978). The Collection Efficiency of Impaction Surfaces: A New Impaction Surface. Staub-Reinhalt. Luft, 38:55–58.
  • Tsai, C. J., and Cheng, Y. H. (1995). Solid Particle Collection Characteristics on Impaction Surfaces of Different Designs. Aerosol Sci. Technol., 23:96–106.
  • Tsai, C. J., Liu, C. N., Hung, S. M., Chen, S. C., Uang, S. N., Cheng, Y. S., and Zhou, Y. (2012). Novel Active Personal Nanoparticle Sampler for the Exposure Assessment of Nanoparticles in Workplaces. Environ. Sci. Technol., 46:4546–4552.
  • Turner, J. R., and Hering, S. V. (1987). Greased and Oiled Substrates as Bounce-Free Impaction Surfaces. J. Aerosol Sci., 18:215–224.
  • Valiliou, J. G., Sorensen, D., and McMurry, P. H. (1999). Sampling at Controlled Relative Humidity with a Cascade Impactor. Atmos. Environ., 33:1049–1056.
  • Wang, H. C., and John, W. (1988). Characteristics of the Berner Impactor for Sampling Inorganic Ions. Aerosol Sci. Technol., 8:157–172.
  • Yao, M., and Mainelis, G. (2006). Investigation of Cut-off Sizes and Collection Efficiencies of Portable Microbial Samplers. Aerosol Sci. Technol., 40:595–606.
  • Zhu, C. S., Chen, C. C., Cao, J. J., Tsai, C. J., Chou, C. C. K., Liu, S. C., and Roam, G. D. (2010). Characterization of Carbon Fractions for Atmospheric Fine Particles and Nanoparticles in a Highway Tunnel. Atmos. Environ., 44:2668–2673.
  • Zhu, C. S., Tsai, C. J., Chen, S. C., Cao, J. J., and Roam, G. D. (2012). Positive Sampling Artifacts of Organic Carbon Fractions for Fine Particles and Nanoparticles in a Tunnel Environment. Atmos. Environ., 54:225–230.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.