578
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Volume Fraction on Transient Structural Behavior of Aerosol Particles Using Off-Lattice Kinetic Monte Carlo Simulation

, , , , &
Pages 1242-1255 | Received 01 Mar 2015, Accepted 27 Oct 2015, Published online: 30 Nov 2015

REFERENCES

  • Alimova, A., Katz, A., Orozco, J., Wei, H., Gottlieb, P., Rudolph, E., Steiner, J.C., and Xu, M. (2009). Broadband Light Scattering Measurements of the Time Evolution of the Fractal Dimension of Smectite Clay Aggregates. J. Opt. A- Pure Appl. Opt., 11:105706–105712.
  • Brasil, A. M., Farias, T. L., Carvalho, M. G., and Koylu, U. O. (2001). Numerical Characterization of the Morphology of Aggregated Particles. Aerosol Sci. Technol., 32:489–508.
  • Buesser, B., Heine, M. C., and Pratsinis, S. E. (2009). Coagulation of Highly Concentrated Aerosols. Aerosol Sci. Technol., 40:89–100.
  • Bushell, G. C., Yan, Y. D., Woodfield, D., Raper, J., and Amal R. (2002). On Techniques for the Measurement of the Mass Fractal Dimension of Aggregates. Adv. Colloid Interface Sci., 95:1–50.
  • Chakrabarty, R. K., Moosmuller, H., Arnott, W. P., Garra, M. A., Tian, G. X., Slowik, J. G., Cross, E. S., Han, J. H., Davidovits, P., Onasch, T. B., and Warsnop, D. R. (2009). Low Fractal Dimension Cluster-Dilute Soot Aggregates From a Premixed Flame. Phys. Rev. Lett., 102:235504.
  • Dhaubhadel, R., Chakrabarti, A., and Sorensen, C. M., (2009). Light Scattering Study of Aggregation Kinetics in Dense, Gelling Aerosols. Aerosol Sci. Technol., 43:1053–1063.
  • Dhaubhadel, R., Pierce, F., Chakrabarti, A., and Sorensen, C. M. (2006). Hybrid Superaggregate Morphology as a Result of Aggregation in a Cluster-Dense Aerosol. Phys. Rev. E, 73:011404.
  • Evans, W., Prasher, R., Fish, J., Meakin, P., Phelan, P., and Keblinski, P. (2008). Effect of Aggregation and Interfacial Thermal Resistance on Thermal Conductivity of Nanocomposites and Colloidal Nanofluids. Int. J. Heat Mass Transfer, 51:1431–1438.
  • Fry, D., Chakrabarti, A., Kim, W., and Sorensen, C. M. (2004a). Structural Crossover in Dense Irreversibly Aggregating Particulate Systems. Phys. Rev. E, 69:061401.
  • Fry, D., Mohammad, A., Chakrabarti, A., and Sorensen, C. M. (2004b). Cluster Shape Anisotropy in Irreversibly Aggregating Particulate Systems. Langmuir, 20:7871–7879.
  • Fry, D., Sintes, T., Chakrabarti, A., and Sorensen, C. M. (2002). Enhanced Kinetics and Free-Volume Universality in Dense Aggregating Systems. Phys. Rev. Lett., 89:148301.
  • Gimel, J. C., Nicolai, T., and Durand, D. (1999). 3D Monte Carlo Simulations of Diffusion Limited Cluster Aggregation up to the Sol-Gel Transition: Structure and Kinetics. Sol-Gel Sci. Technol., 15:129–136.
  • Gruy, F. (2011). Population Balance for Aggregation Coupled with Morphology Changes. Colloids Surf. A-Physicochem. Eng. Aspects, 374:69–76.
  • Hasmy, A., Anglaret, E., Thouy, R., and Jullien, R. (1997). Fluctuating Bond Aggregation: A Numerical Simulation of Neutrally-Reacted Silica Gels. J. Phys. I, 7:521–542.
  • Heine, M. C.. and Pratsinis, S. E. (2006). Brownian Coagulation in Dense Systems: Thermal Non-equilibrium Effects. Langmuir, 22:10238–10245.
  • Heinson, W. R., Sorensen, C. M., and Chakrabarti, A. (2010). Does Shape Anisotropy Control the Fractal Dimension in Diffusion-Limited Cluster-Cluster Aggregation? Aerosol Sci. Technol., 44:12i–12iv.
  • Heinson, W. R., Sorensen, C. M., and Chakrabarti, A. (2012). A Three Parameter Description of the Structure of Diffusion Limited Cluster Fractal Aggregates. J. Colloid Interface Sci., 375:65–69.
  • Jullien, R., and Meakin, P. J. (1989). Simple Models for the Restructuring of Three-Dimensional Ballistic Aggregates. J. Colloid Interface Sci., 127:265–272.
  • Kearney, S. P., and Pierce, F. (2012). Evidence of Soot Superaggregates in a Turbulent Pool Fire. Combust. Flame, 159:3191–3198.
  • Kim, S., Lee, K.-S., Zachariah, M. R., and Lee, D. (2010). Three Dimensional Off-Lattice Monte Carlo Simulations on a Direct Relation Between Experimental Parameters and Fractal Dimension of Colloidal Aggregates. J. Colloid Interface Sci., 344:353–361.
  • Kim, W. G., and Sorensen, C. M. (2006). Soot Aggregates, Superaggregates and Gel-Like Networks in Laminar Diffusion Flames. J. Aerosol Sci., 37:386–401.
  • Kostoglou, M., and Konstandopoulos, A. G. (2001). Evolution of Aggregate Size and Fractal Dimension During Brownian Coagulation. J. Aerosol Sci., 32:1399–1420.
  • Lattuada, M. (2012). Predictive Model for Diffusion-Limited Aggregation Kinetics of Nanocolloids Under High Concentration. J. Phys. Chem. B, 116:120–129.
  • Lattuada, M., Wu, H., and Morbidelli, M. (2003). A Simple Model for the Structure of Fractal Aggregates. J. Colloid Interface Sci., 268:106–120.
  • Liffman, K. (1992). A Direct Simulation Monte-Carlo for Cluster Coagulation. J. Comput. Phys., 100:116–127.
  • Lindsay, H. M., Klein, R., Weitz, D. A., Lin, M. Y., and Meakin, P. (1989). Structure and Anisotropy of Colloid Aggregates. Phys. Rev. A, 39:3112–3119.
  • Madler, L., Lall, A. A., and Friedlander, S. K. (2006). One-step Aerosol Synthesis of Nanoparticle Agglomerate Films: Simulation of Film Porosity and Thickness. Nanotechnology, 17:4783–4795.
  • Mansfield, M. L.. and Douglas, J. F. (2013). Shape Characteristics of Equilibrium and Non-Equilibrium Fractal Clusters. J. Chem. Phys., 139:044901.
  • Mazumdar, T., Mazumder, S., and Sen, D. (2011). Temporal Evolution of Mesoscopic Structure of Some Non-Euclidean Systems Using a Monte Carlo model. Phys. Rev. B, 83:104302.
  • Molnar, D., Mukherjee, R., Choudhury, A., Mora, A., Binkele, P., Selzer, M., Nestler, B., and Schmauder, S. (2012). Multiscale Simulations on the Coarsening of Cu-rich Precipitates in a-Fe Using Kinetic Monte Carlo, Molecular Dynamics and Phase-field Simulations. Acta Mater., 60:6961–6971.
  • Mukherjee, D., Sonwane, C. G., and Zachariah, M. R. (2003). Kinetic Monte Carlo Simulation of the Effect of Coalescence Energy Release on the Size and Shape Evolution of Nanoparticles Grown as an Aerosol. J. Chem. Phys., 119:3391–3404.
  • Orrite, S. D., Stoll, S., and Schurtenbergerb, P. (2005). Off-lattice Monte Carlo Simulations of Irreversible and Reversible Aggregation Processes. Soft Matter., 1:364–371.
  • Reim, M., Korner, W., Manara, J., Korder, S., Arduini-Schuster, M., Ebert, H.-P., and Fricke, J. (2005). Silica Aerogel Granulate Material for Thermal Insulation and Daylighting. Solar Energy, 79:131–139.
  • Rottereau, M., Gimel, J. C., Nicolai, T., and Durand, D. (2004). Monte Carlo Simulation of Particle Aggregation and Gelation: I. Growth, Structure and Size Distribution of the Clusters. Eur. Phys. J. E, 15:133–140.
  • Sanz, E.. and Marenduzzo, D. (2010). Dynamic Monte Carlo Versus Brownian Dynamics: A Comparison for Self-diffusion and Crystallization in Colloidal Fluids. J. Chem. Phys., 132:194102.
  • Smith, M.. and Matsoukas, T. (1998). Constant-Number Monte Carlo Simulation of Population Balances. Chem. Eng. Sci., 53:1777–1786.
  • Soos, M., Lattuada, M., and Sefcik, J. (2009). Interpretation of Light Scattering and Turbidity Measurements in Aggregated Systems: Effect of Intra-Cluster Multiple-Light Scattering. Phys. Chem. B, 113:14962–14970.
  • Sorensen, C. M., and Chakrabarti, A. (2011). The Sol to Gel Transition in Irreversible Particulate Systems. Soft Matter., 7:2284–2296.
  • Sorensen, C. M., and Roberts, G. C. (1997). The Prefactor of Fractal Aggregates. J. Colloid Interface Sci., 186:447–452.
  • Tassopoulos, M., and Rosner, D. E. (1992). Microstructural Descriptors Characterizing Granular Deposits. AIChE J., 38:15–25.
  • Trzeciak, T. M. (2012). Brownian Coagulation at High Particle Concentrations, Ph. D. thesis. Delft University of Technology, Delft, p. 28, http://repository.tudelft.nl/view/ir/uuid:92c8f6b3-feab-4dac-bc0a-db0c4460870f.
  • Trzeciak, T. M., Podgórski, A., and Marijnissen, J. C. M. (2014). Brownian Coagulation in Dense Systems: Thermal Non-equilibrium Effects. J. Aerosol Sci., 69:1–12
  • Vemury, S.. and Pratsinis, S. E. (1995). Self-Preserving Size Distributions of Agglomerates. J. Aerosol Sci., 26:175–185.
  • Wu, M. K., and Friedlander, S. K. (1993). Enhanced Power Law Agglomerate Growth in the Free Molecule Regime. J. Aerosol Sci., 24:273–282.
  • Wu, H., Lattuada, M., and Morbidelli, M. (2013). Dependence of Fractal Dimension of DLCA Clusters on Size of Primary Particles. Adv. Colloid Interface Sci., 195–196:41–49.
  • Yang, G., and Biswas, P. (1999). Computer Simulation of the Aggregation and Sintering Restructuring of Fractal-Like Clusters Containing Limited Numbers of Primary Particles. J. Colloid Interface Sci., 211:142–150.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.