3,470
Views
16
CrossRef citations to date
0
Altmetric
ARTICLES

Influence of temperature and pressure on carbon black size distribution during allothermal cracking of methane

, , &
Pages 26-40 | Received 02 Oct 2015, Accepted 13 Nov 2015, Published online: 18 Dec 2015

References

  • Abanades, S., and Flamant, G. (2007). Experimental Study and Modeling of a High-temperature Solar Chemical Reactor for Hydrogen Production From Methane Cracking. Int. J. Hydrogen Energy, 32(10–11):1508–1515.
  • Becker R. and Doring, W. (1935). Kinetic treatment of germ formation in supersaturated vapour. Annalen Der Physik 24(8):719–752.
  • Berezkin, V. I. (2001). Formation of Closed Carbon Particles From Fullerene Nuclei. Phys. Solid State, 43(5):967–972.
  • Bird, R., Stewart, W., and Lightfoot, E. (2007). Transport Phenomena. Wiley, New York.
  • Bohren, C. F., and Huffman, D. (1983). Absorption and Scattering of Light by Small Particles. Wiley, New York.
  • Caliot, C., Abanades, S., Soufiani, A., and Flamant, G. (2010). Effects of Non-gray Thermal Radiation on the Heating of a Methane Laminar Flow at High Temperature. Fuel, 89(1):262–262.
  • Caliot, C., Flamant, G., Patrianakos, G., Kostoglou, M., and Konstandopoulos, A. G. (2012). Two-dimensional Model of Methane Thermal Decomposition Reactors with Radiative Heat Transfer and Carbon Particle Growth. AICHE J., 58(8):2545–2556.
  • Colombo, V., Ghedini, E., Gherardi, M., Sanibondi, P., and Shigeta, M. (2012). A Two-dimensional Nodal Model with Turbulent Effects for the Synthesis of Si Nano-particles by Inductively Coupled Thermal Plasmas. Plasma Sources Sci. Technol., 21(2). Available at http://iopscience.iop.org/article/10.1088/0963-0252/21/2/025001/meta.
  • Deme, I. (2002). Contribution to the Flow Modeling in a Plasma Reactor for the Fabrication of Carbon Blacks. Influence of the Radiation of the Carbon Black Particles. Thesis. Thèse de doctorat Énergétique Paris, ENMP 2002 2002ENMP1112.
  • Fabry, F., Flamant, G., and Fulcheri, L. (2001). Carbon Black Processing by Thermal Plasma. Analysis of the Particle Formation Mechanism. Chem. Eng. Sci., 56(6):2123–2132.
  • Fincke, J. R., Anderson, R. P., Hyde, T. A., and Detering, B. A. (2002). Plasma Pyrolysis of Methane to Hydrogen and Carbon Black. Ind. Eng. Chem. Res., 41(6):1425–1435.
  • Frenklach, M. (2002). Reaction Mechanism of Soot Formation in Flames. Phys. Chem. Chem. Phys., 4(11):2028–2037.
  • Friedlander, S. (2000). Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics. Oxford University Press, Oxford, UK.
  • Friedlander, S. K. (1982). The Behavior of Constant Rate Aerosol Reactors. Aerosol Sci. Technol., 1(1):3–13.
  • Fuchs, N. A. (1964). The Mechanics of Aerosols. Pergamon Press, Oxford.
  • Fulcheri, L., Probst, N., Flamant, G., Fabry, F., Grivei, E., and Bourrat, X. (2002). Plasma Processing: A Step Towards the Production of New Grades of Carbon Black. Carbon, 40(2):169–176.
  • Fulcheri, L., and Schwob, Y. (1995). From Methane to Hydrogen, Carbon-black and Water. Int. J. Hydrogen Energy, 20(3):197–202.
  • Gaudernack, B., and Lynum, S. (1996). Hydrogen From Natural Gas Without Release of CO2 to the Atmosphere,” Hydrogen Energy Progress Xi, 1–3:511–523.
  • Gelbard, F., Tambour, Y., and Seinfeld, J. H. (1980). Sectional Representations for Simulating Aerosol Dynamics. J. Colloid Interface Sci., 76(2):541–556.
  • Girshick, S. L., and Chiu, C. P. (1989). Homogeneous Nucleation of Particles From the Vapor Phase in Thermal Plasma Synthesis. Plasma Chem. Plasma Process., 9(3):355–369.
  • Gonzalez-Aguilar, J., Deme, I., Fulcheri, L., Flamant, G., Gruenberger, T. M., and Ravary, B. (2004). Comparison of Simple Particle-Radiation Coupling Models Applied on a Plasma Black Process. Plasma Chem. Plasma Process., 24(4):603–623.
  • Gonzalez-Aguilar, J., Deme, I., Fulcheri, L., Gruenberger, T. M., Fabry, F., Flamant, G., and Ravary, B. (2003). 3D Modelling of Carbon Black Formation and Particle Radiation During Methane Cracking by Thermal Plasma. High Temp. Mater. Process., 7(1):51–56.
  • Katz, J. L., and Wiedersich, H. (1971). Nucleation of Voids in Materials Supersaturated with Vacancies and Interstitials. J. Chem. Phys., 55(3):1414–1425.
  • Kogan, A., Israeli, M., and Alcobi, E. (2007). Production of Hydrogen and Carbon by Solar Thermal Methane Splitting. IV. Preliminary Simulation of a Confined Tornado Flow Configuration by Computational Fluid Dynamics. Int. J. Hydrogen Energy, 32(18):4800–4810.
  • Lahaye, J. (1992). Particulate Carbon From the Gas-phase. Carbon, 30(3):309–314.
  • Lockwood, F. C., and Vanniekerk, J. E. (1995). Parametric Study of a Carbon-black Oil Furnace. Combust. Flame, 103(1–2):76–90.
  • Maag, G., Zanganeh, G., and Steinfeld, A. (2009). Solar Thermal Cracking of Methane in a Particle-flow Reactor for the Co-production of Hydrogen and Carbon. Int. J. Hydrogen Energy, 34(18):7676–7685.
  • Modest, M. F. (2013). Radiative Heat Transfer, 3rd ed., Elsevier Academic Press Inc., San Diego, USA, pp. 1–882.
  • Moreno-Couranjou, M., Monthioux, M., Gonzalez-Aguilar, J., and Fulcheri, L. (2009). A Non-thermal Plasma Process for the Gas Phase Synthesis of Carbon Nanoparticles. Carbon, 47(10):2310–2321.
  • Patrianakos, G., Kostoglou, M., and Konstandopoulos, A. (2011). One-dimensional Model of Solar Thermal Reactors for the Co-production of Hydrogen and Carbon Black From Methane Decomposition. Int. J. Hydrogen Energy, 36(1):189–202.
  • Patrianakos, G., Kostoglou, M., and Konstandopoulos, A. G. (2012). Effect of Seeding on Hydrogen and Carbon Particle Production in a 10 mw Solar Thermal Reactor for Methane Decomposition. Int. J. Hydrogen Energy, 37(21):16570–16580.
  • Perrin, M. Y., and Soufiani, A. (2007). Approximate Radiative Properties of Methane at High Temperature. J. Quant. Spectrosc. Radiat. Transfer, 103(1):3–13.
  • Phanse, G. M., and Pratsinis, S. E. (1989). Theory for Aerosol Generation in Laminar-flow Condensers. Aerosol Sci. Technol., 11(2):100–119.
  • Pratsinis, S. E. (1988). Simultaneous Nucleation, Condensation, and Coagulation in Aerosol Reactors. J. Colloid Interface Sci., 124(2):416–427.
  • Pratsinis, S. E. (1993). The Role of Aerosols in Materials Processing. Aerosol Sci. Technol., 19(4):409–410.
  • Ramkrishna, D. (2000). Population Balances: Theory and Applications to Particulate Systems in Engineering. Elsevier Science, Atlanda, GA, USA.
  • Ravary, B., Bakken, J. A., Gonzalez-Aguilar, J., and Fulcheri, L. (2003). CFD Modeling of a Plasma Reactor for the Production of Nano-sized Carbon Materials. High Temp. Mater. Process., 7(2):139–144.
  • Richter, H., Granata, S., Green, W. H., and Howard, J. B. (2005). Detailed Modeling of pah and Soot Formation in a Laminar Premixed Benzene/Oxygen/Argon Low-pressure Flame. Proc. Combust. Inst., 30:1397–1405.
  • Rodat, S., Abanades, S., Coulie, J., and Flamant, G. (2009). Kinetic Modelling of Methane Decomposition in a Tubular Solar Reactor. Chem. Eng. J., 146(1):120–127.
  • Rodat, S., Abanades, S., Grivei, E., Patrianakos, G., Zygogianni, A., Konstandopoulos, A. G., and Flamant, G. (2011). Characterisation of Carbon Blacks Produced by Solar Thermal Dissociation of Methane. Carbon, 49(9):3084–3091.
  • Rodat, S., Abanades, S., Sans, J. L., and Flamant, G. (2010). A Pilot-scale Solar Reactor for the Production of Hydrogen and Carbon Black From Methane Splitting. Int. J. Hydrogen Energy, 35(15):7748–7758.
  • Steinfeld, A. (2005). Solar Thermochemical Production of Hydrogen - A Review. Solar Energy, 78(5):603–615.
  • Seinfeld, J. H., Kleindienst, T. E., Edney, E. O., and Cohen, J. B. (2003). Aerosol Growth in a Steady-state, Continuous Flow Chamber: Application to Studies of Secondary Aerosol Formation. Aerosol Sci. Technol., 37(9):728–734.
  • Trommer, D., Hirsch, D., and Steinfeld, A. (2004). Kinetic Investigation of the Thermal Decomposition of CH4 by Direct Irradiation of a Vortex-flow Laden With Carbon Particles. Int. J. Hydrogen Energy, 29(6):627–633.
  • T&Twinner (2009). T&Twinner. Available at http://ttwinner.free.fr/en/home.html.
  • Warren, D. R., and Seinfeld, J. H. (1984). Nucleation and Growth of Aerosol From a Continuously Reinforced Vapor. Aerosol Sci. Technol., 3(2):135–153.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.