754
Views
0
CrossRef citations to date
0
Altmetric
Articles

Monte Carlo N-particle tracking of ultrafine particle flow in bent microtubes

&
Pages 272-283 | Received 05 Oct 2015, Accepted 01 Jan 2016, Published online: 26 Feb 2016

References

  • Akhatov, I. S., Hoey, J. M., Swenson, O. F., and Schulz, D. L. (2008). Aerosol Flow Through a Long Micro-Capillary: Collimated Aerosol Beam. Microfluid Nanofluid, 5:215–224.
  • Berger, S. A., Talbot, L., and Yao, L. (1983). Flow in Curved Pipes. Annu. Rev. Fluid. Mech., 15:461–512.
  • Bird, R. B., Stewart, W. E., and Lightfoot, E. N. (2007). Transport Phenomena. John Wiley & Sons, Inc., New York.
  • Breuer, M., Baytekin, H. T., and Matida, E. A. (2006). Prediction of Aerosol Deposition in 90° Bends Using LES and Efficient Lagrangian Tracking Method. J. Aerosol. Sci., 37:1407–1428.
  • Casella, A. M. (2007a). Modeling of Molecular and Particulate Transport in Dry Spent Nuclear Fuel Canisters. Doctoral Dissertation, University of Missouri-Columbia.
  • Casella, A. M., Hanson, B. D., and Loyalka, S. K. (2007b). A Monte Carlo Program for Modeling Particulate Flows Through Pinhole Breaches in Spent Fuel Canisters. T. Am. Nucl. Soc., 97:637–638.
  • Casella, A. M., Hanson, B. D., and Loyalka, S. K. (2014). Modeling of Particulate Behavior in Pinhole Breaches. Nucl. Technol., 186:99–114.
  • Dean, W. R. (1927). Note on the Motion of Fluid in a Curved Pipe. Philos. Mag., 20:208–223.
  • Dean, W. R. (1928). The Streamline Motion of Fluid in a Curved Pipe. Philos. Mag., 30:673–693.
  • Einstein, A. (1956). Investigations on the Theory of the Brownian Movement. Dover Publications, Inc. New York.
  • Gormley, P. G., and Kennedy, M. (1949). Diffusion from a Stream Flowing through a Cylindrical Tube. Proc. R. Irish Acad., 52:169.
  • Guan, X., and Martonen, T. B. (1997). Simulations of Flow in Curved Tubes. Aerosol. Sci. Technol., 26:485–504.
  • Hinds, W. C. (1999). Aerosol Technology-Properties, Behavior, and Measurement of Airborne Particles. 2nd ed. John Wiley & Sons, Inc., New York.
  • Incropera, W. M., and DeWitt, D. P. (1996). Fundamentals of Heat and Mass Transfer. John Wiley & Sons, Inc., New York.
  • Ito, H. (1959). Friction Factors for Turbulent Flow in Curved Pipes. J. Basic Eng.-T. ASME., 81:123–129.
  • Karniadakis, G., Beskok, A., and Aluru, N. (2005). Microflows and Nanoflows Fundamentals and Simulation. Springerm, New York.
  • Lin, J. Z., Yin, Z. Q., Lin, P. F., Yu, M. Z., and Ku, X. K. (2015). Distribution and Penetration Efficiency of Nanoparticles Between 8–550 nm in Pipe Bends Under Laminar and Turbulent Flow Conditions. Int. J. Heat Mass. Tran., 85:61–70.
  • Marshall, J. S., and Renjitham, S. (2015). Simulation of Particulate Fouling at a Microchannel Entrance Region. Microfluid Nanofluid, 18:253–265.
  • Morton, D. A. V., and Mitchell, J. P. (1995). Aerosol Penetration Through Capillaries and Leaks: Experimental Studies on the Influence of Pressure. J. Aerosol. Sci., 26:353–367.
  • Novosselov, I. V., Gorder, R. A., Van Amberg, J. A., and Ariessohn, P. C. (2014). Design and Performance of a Low-cost Micro-channel Aerosol Collector. Aerosol. Sci. Tech., 48:822–830.
  • Pilou, M., Tsangaris, S., Neofytou, P., Housiadas, C., and Drossinos, Y. (2011) Inertial Particle Deposition in a 90° Laminar Flow Bend: An Eulerian Fluid Particle Approach. Aerosol. Sci. Technol., 45:1376–1387.
  • Quek, T. Y., Wang, C. H., and Ray, M. B. (2005). Dilute Gas-solid Flows in Horizontal and Vertical Bends. Ind. Eng. Chem. Res., 44:2301–2315.
  • Sharp, K. V., and Adrian, R. J. (2005). On Flow-blocking Particle Structures in Microtubes. Microfluid Nanofluid., 1:376–380.
  • Sun, K., and Lu, L. (2013). Particle Flow Behavior in Distribution and Deposition Throughout 90° Bends: Analysis of Influencing Factors. Aerosol. Sci. Tech., 65: 26–41.
  • Tan, C. W., and Hsu, C. J. (1971). Diffusion of Aerosols in Laminar Flow in a Cylindrical Tube. J. Aerosol. Sci., 2:117–124.
  • Tavakoli, F., Mitra, S. K., and Olfert, J. S. (2011). Aerosol Penetration in Microchannels. J. Aerosol. Sci., 42: 321–328.
  • Taylor, G. I. (1929). The Criterion for Turbulence in Curved Pipes. Proc. R. Soc. London Ser. A, 124:243–249.
  • Tsai, C., and Pui, D. Y. H. (1990). Numerical Study of Particle Deposition in Bends of a Circular Cross-section – Laminar Flow Regime. Aerosol. Sci. Technol., 12:813–831.
  • Van Dyke, M. (1978). Extended Stokes Series: Laminar Flow Through a Loosely Coiled Pipe. J. Fluid Mech., 86:129–145.
  • Vasquez, E. S., Walters, K. B., and Walters, D. K. (2015). Analysis of Particle Transport and Deposition of Micron-sized Particles in a 90° Bend Using a Two-fluid Eulerian-Eulerian Approach. Aerosol. Sci. Technol., 49:691–703.
  • Wang, J., Flagan, R. C., and Seinfeld, J. H. (2002). Diffusional Losses in Particle Sampling Systems Containing Bends and Elbows. J. Aerosol. Sci., 33: 843–857.
  • Williams, M. M. R. (1994). Particle Deposition and Plugging in Tubes and Cracks (with Special Reference to Fission Product Retention). Prog. Nucl. Energy, 28:1–60.
  • Williams, M. M. R. (1996). A Model for the Transport of Vapour, Gas and Aerosol Droplets Through Tubes and Cracks. Prog. Nucl. Energy, 30:333–416.
  • Williams, M. M. R., and Loyalka, S. K. (1991). Aerosol Science. Pergamon Press, New York.
  • X-5 Monte Carlo Team, MCNP – A General Monte Carlo N-Particle Transport Code, Version 5, Volume 1: Overview and Theory, LA-UR-03-1987, Los Alamos National Laboratory, Los Alamos, New Mexico, 2005. Available at: http://mcnp-green.lanl.gov/pdf/MCNP5_Manual_Volume_I_LA-UR-03-1987.pdf.
  • Yook, S., and Pui, D. Y. H. (2006). Experimental Study of Nanoparticle Penetration Efficiency Through Coils of Circular Cross-sections. Aersosol. Sci. Technol., 40:456–462.
  • Zhang, Z., and Chen, Q. (2007) Comparison of the Eulerian and Lagrangian Methods for Predicting Particle Transport in Enclosed Spaces. Atmos. Environ., 41:5236–5248.
  • Zhang, P., Roberts, R. M., and Bénard, A. (2012). Computational Guidelines and an Empirical Model for Particle Deposition in Curved Pipes Using an Eulerian-Lagrangian Approach. J. Aerosol. Sci., 53:1–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.