1,083
Views
35
CrossRef citations to date
0
Altmetric
Articles

Influence of waste cooking oil biodiesel on the nanostructure and volatility of particles emitted by a direct-injection diesel engine

, &
Pages 893-905 | Received 11 Jan 2016, Accepted 10 Jun 2016, Published online: 20 Jun 2016

References

  • Agudelo, J. R., Álvarez, A., and Armas, O. (2014). Impact of Crude Vegetable Oils on the Oxidation Reactivity and Nanostructure of Diesel Particulate Matter. Combust, Flame, 161(11):2904–2915.
  • Bakeas, E. B., and Karavalakis, G. (2013). Regulated, Carbonyl and Polycyclic Aromatic Hydrocarbon Emissions from a Light-Duty Vehicle Fueled with Diesel and Biodiesel Blends. Environ. Sci., 15(2):412–422.
  • Ballesteros, R., Hernandez, J. J., Lyons, L. L., Cabanas, B., and Tapia, A. (2008). Speciation of the Semivolatile Hydrocarbon Engine Emissions from Sunflower Biodiesel. Fuel, 87(10):1835–1843.
  • Barrientos, E. J., Maricq, M. M., Boehman, A. L., and Anderson, J. E. (2015). Impact of Ester Structures on the Soot Characteristics and Soot Oxidative Reactivity of Biodiesel (No. 2015–01–1080). SAE Technical Paper.
  • Bennett, M., Volckens, J., Stanglmaier, R., McNichol, A. P., Ellenson, W. D., and Lewis, C. W. (2008). Biodiesel Effects on Particulate Radiocarbon (14 C) Emissions from a Diesel Engine. J. Aerosol Sci., 39(8):667–678.
  • Boehman, A. L., Song, J., and Alam, M. (2005). Impact of Biodiesel Blending on Diesel Soot and the Regeneration of Particulate Filters. Energy Fuels, 19(5):1857–1864.
  • Braun, A., Huggins, F. E., Shah, N., Chen, Y., Wirick, S., Mun, S. B., Jacobsen, C., and Huffman, G. P. (2005). Advantages of Soft X-ray Absorption Over TEM-EELS for Solid Carbon Studies—A Comparative Study on Diesel Soot with EELS and NEXAFS. Carbon, 43(1):117–124.
  • Bresenham, D., Reisel, J., and Neusen, K. (1998). Spindt Air-Fuel Ratio Method Generalization for Oxygenated Fuels (No. 982054). SAE Technical Paper.
  • Cheng, M. T., Chen, H. J., Young, L. H., Yang, H. H., Tsai, Y. I., Wang, L. C., Lu, J. H., and Chen, C. B. (2015). Carbonaceous Composition Changes of Heavy-Duty Diesel Engine Particles in Relation to Biodiesels, Aftertreatments and Engine Loads. J. Hazardous Mater., 297:234–240.
  • Cheng, C. H., Cheung, C. S., Chan, T. L., Lee, S. C., Yao, C. D., and Tsang, K. S. (2008). Comparison of Emissions of a Direct Injection Diesel Engine Operating on Biodiesel with Emulsified and Fumigated Methanol. Fuel, 87(10):1870–1879.
  • Cho, S. H., Tong, H., McGee, J. K., Baldauf, R. W., Krantz, Q. T., and Gilmour, M. I. (2009). Comparative Toxicity of Size-Fractionated Airborne Particulate Matter Collected at Different Distances from an Urban Highway. Environ Health Perspect, 117(11):1682–1689.
  • Di, Y., Cheung, C. S., and Huang, Z. (2009a). Experimental Investigation on Regulated and Unregulated Emissions of a Diesel Engine Fueled with Ultra-Low Sulfur Diesel Fuel Blended with Biodiesel from Waste Cooking Oil. Sci. Total Environ., 407(2):835–846.
  • Di, Y., Cheung, C. S., and Huang, Z. (2009b). Comparison of the Effect of Biodiesel-Diesel and Ethanol-Diesel on the Particulate Emissions of a Direct Injection Diesel Engine. Aerosol Sci. Technol., 43(5):455–465.
  • Grigoratos, T., Fontaras, G., Kalogirou, M., Samara, C., Samaras, Z., and Rose, K. (2014). Effect of Rapeseed Methylester Blending on Diesel Passenger Car Emissions–Part 2: Unregulated Emissions and Oxidation Activity. Fuel, 128:260–267.
  • Hurt, R. H., Crawford, G. P., and Shim, H. S. (2000). Equilibrium Nanostructure of Primary Soot Particles. Proc. Combust. Inst., 28(2):2539–2546.
  • Jung, H., Kittelson, D. B., and Zachariah, M. R. (2006). Characteristics of SME Biodiesel-Fueled Diesel Particle Emissions and the Kinetics of Oxidation. Environ. Sci. Technol., 40(16):4949–4955.
  • Katoshevski, D., Ruzal, M., Shakked, T., and Sher, E. (2010). Particle Grouping, a New Method for Reducing Emission of Submicron Particles From Diesel Engines. Fuel, 89(9):2411–2416.
  • Klejnowski, K., Pastuszka, J. S., Rogula-Kozłowska, W., Talik, E., and Krasa, A. (2012). Mass size Distribution and Chemical Composition of the Surface Layer of Summer and Winter Airborne Particles in Zabrze, Poland. Bull. Environ. Contaminat. Toxicol., 88(2):255–259.
  • Kline, S. J., and McClintock, F. A. (1953). Describing Uncertainties in Single-Sample Experiments. Mech. Eng., 75(1):3–8.
  • Krahl, J., Munack, A., Schröder, O., Stein, H., and Bünger, J. (2003). Influence of Biodiesel and Different Designed Diesel Fuels on the Exhaust Gas Emissions and Health Effects (No. 2003–01–3199). SAE Technical Paper.
  • Lapuerta, M., Oliva, F., Agudelo, J. R., and Boehman, A. L. (2012). Effect of Fuel on the Soot Nanostructure and Consequences on Loading and Regeneration of Diesel Particulate Filters. Combust. Flame, 159(2):844–853.
  • Lapuerta, M., Armas, O., and Rodriguez-Fernandez, J. (2008). Effect of Biodiesel Fuels on Diesel Engine Emissions. Prog. Energy Combust. Sci., 34(2):198–223.
  • Liati, A., Spiteri, A., Eggenschwiler, P. D., and Vogel-Schäuble, N. (2012). Microscopic Investigation of Soot and Ash Particulate Matter Derived from Biofuel and Diesel: Implications for the Reactivity of Soot. J. Nanopart. Res., 14(11):1–18.
  • Li, Z., Song, C., Song, J., Lv, G., Dong, S., and Zhao, Z. (2011). Evolution of the Nanostructure, Fractal Dimension and Size of in-Cylinder Soot During Diesel Combustion Process. Combust. Flame, 158(8):1624–1630.
  • Lu, T., Cheung, C. S., and Huang, Z. (2012a). Investigation on Particulate Oxidation from a DI Diesel Engine Fueled with Three Fuels. Aerosol Sci. Technol., 46(12):1349–1358.
  • Lu, T., Cheung, C. S., and Huang, Z. (2013). Influence of Waste Cooking Oil Biodiesel on the Particulate Emissions and Particle Volatility of a DI Diesel Engine. Aerosol Air Qual. Res., 13(1):243–254.
  • Lu, T., Cheung, C. S., and Huang, Z. (2012b). Effects of Engine Operating Conditions on the Size and Nanostructure of Diesel Particles. J. Aerosol Sci., 47:27–38.
  • Lu, T., Cheung, C. S., and Huang, Z. (2012c). Size-Resolved Volatility, Morphology, Nanostructure, and Oxidation Characteristics of Diesel Particulate. Energy Fuels, 26(10):6168–6176.
  • Ma, Y., Zhu, M., Zhang, Z., and Zhang, D. (2015). Effect of a Homogeneous Combustion Catalyst on the Nanostructure and Oxidative Properties of Soot from Biodiesel Combustion in a Compression Ignition Engine. Proc. Combust. Inst., 35(2):1947–1954.
  • Man, X. J., Cheung, C. S., Ning, Z., and Yung, K. F. (2015). Effect of Waste Cooking Oil Biodiesel on the Properties of Particulate from a DI Diesel Engine. Aerosol Sci. Technol., 49(4):199–209.
  • Merchan-Merchan, W., Sanmiguel, S. G., and McCollam, S. (2012). Analysis of Soot Particles Derived from Biodiesels and Diesel Fuel Air-Flames. Fuel, 102:525–535.
  • Mueller, C. J., and Martin, G. C. (2002). Effects of Oxygenated Compounds on Combustion and Soot Evolution in a DI Diesel Engine: Broadband Natural Luminosity Imaging (No. 2002-01-1631). SAE Technical Paper.
  • Mustafi, N. N., Raine, R. R., and James, B. (2010). Characterization of Exhaust Particulates from a Dual Fuel Engine by TGA, XPS, and Raman Techniques. Aerosol Sci. Technol., 44(11):954–963.
  • Neer, A., and Koylu, U. O. (2006). Effect of Operating Conditions on the Size, Morphology, and Concentration of Submicrometer Particulates Emitted from a Diesel Engine. Combust. Flame, 146(1):142–154.
  • Ning, Z., Cheung, C. S., and Liu, S. X. (2004). Experimental Investigation of the Effect of Exhaust Gas Cooling on Diesel Particulate. J. Aerosol Sci., 35(3):333–345.
  • Pope III, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., and Thurston, G. D. (2002). Lung Cancer, Cardiopulmonary Mortality, and Long-Term Exposure to Fine Particulate Air Pollution. Jama, 287(9):1132–1141.
  • Salamanca, M., Mondragón, F., Agudelo, J. R., Benjumea, P., and Santamaría, A. (2012a). Variations in the Chemical Composition and Morphology of Soot Induced by the Unsaturation Degree of Biodiesel and a Biodiesel Blend. Combust. Flame, 159(3):1100–1108.
  • Salamanca, M., Mondragón, F., Agudelo, J. R., and Santamaría, A. (2012b). Influence of Palm Oil Biodiesel on the Chemical and Morphological Characteristics of Particulate Matter Emitted by a Diesel Engine. Atmos. Environ., 62:220–227.
  • Shahir, V. K., Jawahar, C. P., and Suresh, P. R. (2015). Comparative Study of Diesel and Biodiesel on CI Engine with Emphasis to Emissions—A review. Renew. Sust. Energy Rev., 45:686–697.
  • Soewono, A., and Rogak, S. (2011). Morphology and Raman Spectra of Engine-Emitted Particulates. Aerosol Sci. Technol., 45(10):1206–1216.
  • Song, J., Alam, M., Boehman, A. L., and Kim, U. (2006). Examination of the Oxidation Behavior of Biodiesel Soot. Combust. Flame, 146(4):589–604.
  • Stratakis, G. A., and Stamatelos, A. M. (2003). Thermogravimetric Analysis of Soot Emitted by a Modern Diesel Engine Run on Catalyst-Doped Fuel. Combust. Flame, 132(1):157–169.
  • Strzelec, A., Toops, T. J., and Daw, C. S. (2011, March). Impact of Biodiesel on the Oxidation Kinetics and Morphology of Diesel Particulate. In Proceedings of the 7th US National Technical Meeting of the Combustion Institute, Atlanta, GA.
  • Steiner, S., Czerwinski, J., Comte, P., Müller, L. L., Heeb, N. V., Mayer, Petri-Fink, Rodriguez-Fernandez, J., Oliva, F., and Vazquez, R. A. (2011). Characterization of the Diesel Soot Oxidation Process Through an Optimized Thermogravimetric Method. Energy Fuels, 25(5):2039–2048.
  • Tan, P. Q., Ruan, S. S., Hu, Z. Y., Lou, D. M., and Li, H. (2014). Particle Number Emissions from a Light-Duty Diesel Engine with Biodiesel Fuels Under Transient-State Operating Conditions. Appl. Energy, 113:22–31.
  • Tree, D. R., and Svensson, K. I. (2007). Soot Processes in Compression Ignition Engines. Prog. Energy Combust. Sci., 33(3):272–309.
  • Turrio-Baldassarri, L., Battistelli, C. L., Conti, L., Crebelli, R., De Berardis, B., Iamiceli, A. L., Gambino, M., and Iannaccone, S. (2004). Emission Comparison of Urban Bus Engine Fueled with Diesel Oil and ‘Biodiesel’ Blend. Sci. Total Environ., 327(1):147–162.
  • Ushakov, S., Valland, H., Nielsen, J. B., and Hennie, E. (2013). Particle Size Distributions from Heavy-Duty Diesel Engine Operated on Low-Sulfur Marine Fuel. Fuel Proc. Technol., 106:350–358.
  • Vander Wal, R. L., and Mueller, C. J. (2006). Initial Investigation of Effects of Fuel Oxygenation on Nanostructure of Soot from a Direct-Injection Diesel Engine. Energy Fuels, 20(6):2364–2369.
  • Vander Wal, R. L., and Tomasek, A. J. (2004). Soot Nanostructure: Dependence Upon Synthesis Conditions. Combust. Flame, 136(1):129–140.
  • Vander Wal, R. L., and Tomasek, A. J. (2003). Soot Oxidation: Dependence Upon Initial Nanostructure. Combust. Flame, 134(1):1–9.
  • Xu, Z., Li, X., Guan, C., and Huang, Z. (2013a). Characteristics of Exhaust Diesel Particles from Different Oxygenated Fuels. Energy Fuels, 27(12):7579–7586.
  • Xu, Z., Li, X., Guan, C., and Huang, Z. (2013b). Effects of Injection Pressure on Diesel Engine Particle Physico-Chemical Properties. Aerosol Sci. Technol., 48(2):128–138.
  • Ye, P., Sun, C., Lapuerta, M., Agudelo, J., Vander Wal, R., Boehman, A. L., Toops, T. J, and Daw, S. (2016). Impact of Rail Pressure and Biodiesel Fueling on the Particulate Morphology and Soot Nanostructures from a Common-Rail Turbocharged Direct Injection Diesel Engine. Int. J. Engine Res., 17(2):193–208.
  • Yehliu, K., Vander Wal, R. L., Armas, O., and Boehman, A. L. (2012). Impact of Fuel Formulation on the Nanostructure and Reactivity of Diesel Soot. Combust. Flame, 159(12):3597–3606.
  • Yehliu, K., Vander Wal, R. L., and Boehman, A. L. (2011). Development of an HRTEM Image Analysis Method to Quantify Carbon Nanostructure. Combust. Flame, 158(9):1837–1851.
  • Zhang, Y., and Boehman, A. L. (2013). Oxidation Behavior of Soot Generated from the Combustion of methyl 2-butenoate in a Co-Flow Diffusion Flame. Combust. Flame, 160(1):112–119.
  • Zhang, J., He, K., Shi, X., and Zhao, Y. (2009). Effect of SME Biodiesel Blends on PM 2.5 Emission from a Heavy-Duty Engine. Atmos. Environ., 43(15):2442–2448.
  • Zhang, Z. H., and Balasubramanian, R. (2014a). Effect of Oxygenated Fuels on Physicochemical and Toxicological Characteristics of Diesel Particulate Emissions. Environ. Sci. Technol., 48(24):14805–14813.
  • Zhang, Z. H., and Balasubramanian, R. (2014b). Physicochemical and Toxicological Characteristics of Particulate Matter Emitted from a Non-Road Diesel Engine: Comparative Evaluation of Biodiesel-Diesel and Butanol-Diesel Blends. J. Hazard. Mater., 264:395–402.
  • Zhou, J. H., Cheung, C. S., Zhao, W. Z., Ning, Z., and Leung, C. W. (2015). Impact of Intake Hydrogen Enrichment on Morphology, Structure and Oxidation Reactivity of Diesel Particulate. Appl. Energy, 160:442–455.
  • Zhu, L., Cheung, C. S., Zhang, W. G., and Huang, Z. (2011). Combustion, Performance and Emission Characteristics of a DI Diesel Engine Fueled with Ethanol–Biodiesel Blends. Fuel, 90(5):1743–1750.
  • Zhu, L., Cheung, C. S., Zhang, W. G., and Huang, Z. (2010). Emissions Characteristics of a Diesel Engine Operating on Biodiesel and Biodiesel Blended with Ethanol and Methanol. Sci. Total Environ., 408(4):914–921.
  • Zhu, J., Lee, K. O., Yozgatligil, A., and Choi, M. Y. (2005). Effects of Engine Operating Conditions on Morphology, Microstructure, and Fractal Geometry of Light-Duty Diesel Engine Particulates. Proc. Combust. Inst., 30(2):2781–2789.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.