2,614
Views
39
CrossRef citations to date
0
Altmetric
LETTER TO THE EDITOR

Comment on “The effects of molecular weight and thermal decomposition on the sensitivity of a thermal desorption aerosol mass spectrometer”

, , , , , , , , , & show all
Pages i-xv | Received 04 Mar 2016, Accepted 16 Jun 2016, Published online: 24 Jun 2016

References

  • Alfarra, M. R., Coe, H., Allan, J. D., Bower, K. N., Boudries, H., Canagaratna, M. R., Jimenez, J. L., Jayne, J. T., Garforth, A., Li, S.-M., and Worsnop, D. R. (2004a). Characterization of Urban and Rural Organic Particulate in the Lower Fraser Valley using two Aerodyne aerosol Mass Spectrometers. Atmos. Environ., 38:5745–5758.
  • Alfarra, R. (2004b). Insights Into Atmospheric Organic Aerosols Using An Aerosol Mass Spectrometer. Ph.D. Thesis at the University of Manchester.
  • Allan, J. D., Bower, K. N., Coe, H., Boudries, H., Jayne, J. T., Canagaratna, M. R., Millet, D. B., Goldstein, A. H., Quinn, P. K., Weber, R. J., and Worsnop, D. R. (2004b). Submicron Aerosol Composition at Trinidad Head, CA During ITCT 2K2, its Relationship with Gas Phase Volatile Organic Carbon and Assessment of Instrument Performance. J. Geophys. Res., 109:D23S24, doi:10.1029/2003JD004208.
  • Allan, J. D., Delia, A. E., Coe, H., Bower, K. N., Alfarra, M. R., Jimenez, J. L., Middlebrook, A. M., Drewnick, F., Onasch, T. B., Canagaratna, M. R., Jayne, J. T., and Worsnop, D. R. (2004a). A Generalised Method for the Extraction of Chemically Resolved Mass Spectra from Aerodyne Aerosol Mass Spectrometer Data. J. Aerosol. Sci., 35:909–922. 10.1016/j.jaerosci.2004.02.007.
  • Bahreini, R., Ervens, B., Middlebrook, A. M., Warneke, C., de Gouw, J. A., DeCarlo, P. F., Jimenez, J. L., Brock, C. A., Neuman, J. A., Ryerson, T. B., Stark, H., Atlas, E., Brioude, J., Fried, A., Holloway, J. S., Peischl, J., Richter, D., Walega, J., Weibring, P., Wollny, A. G., and Fehsenfeld, F. C. (2009). Organic Aerosol Formation in Urban and Industrial Plumes Near Houston and Dallas, Texas. J. Geophys. Res., 114:D00F16. 10.1029/2008JD011493.
  • Bahreini, R., Keywood, M. D., Ng, N. L., Varutbangkul, V., Gao, S., Flagan, R. C., Seinfeld, J. H., Worsnop, D. R., and Jimenez, J. L. (2005). Measurements of Secondary Organic Aerosol (SOA) from Oxidation of Cycloalkenes, Terpenes, and m-Xylene Using an Aerodyne Aerosol Mass Spectrometer. Environ. Sci. Technol., 39:5674–5688, doi: 10.1021/es048061a.
  • Brock, C. A., Wagner, N. L., Anderson, B. E., Attwood, A. R., Beyersdorf, A., Campuzano-Jost, P., Carlton, A. G., Day, D. A., Diskin, G. S., Gordon, T. D., Jimenez, J. L., Lack, D. A., Liao, J., Markovic, M. Z., Middlebrook, A. M., Ng, N. L., Perring, A. E., Richardson, M. S., Schwarz, J. P., Washenfelder, R. A., Welti, A., Xu, L., Ziemba, L. D., and Murphy, D. M. (2016). Aerosol Optical Properties in the Southeastern United States in Summer-Part 1: Hygroscopic Growth. Atmos. Chem. Phys., 16:4987–5007, doi:10.5194/acp-4987-2016.
  • Butler, D. A., Berenbak, B., Stolte, S., and Kleyn, A. W. (1997). Elastic Scattering in a Reactive Environment: NO on Ru(0001)-(1×1)H. Phys. Rev. Lett., 78:4653–4656.
  • Canagaratna, M. R., Jayne, J. T., Ghertner, D. A., Herndon, S., Shi, Q., Jimenez, J. L., Silva, P. J., Williams, P., Lanni, T., Drewnick, F., Demerjian, K. L., Kolb, C. E., and Worsnop, D. R. (2004). Chase Studies of Particulate Emissions from in-use New York City Vehicles. Aerosol Sci. Technol., 38:555–573.
  • Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q., Onasch, T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L. R., Trimborn, A. M., Northway, M. J., DeCarlo, P. F., Kolb, C. E., Davidovits, P., and Worsnop, D. R. (2007). Chemical and Microphysical Characterization of Ambient Aerosols with the Aerodyne Aerosol Mass Spectrometer. Mass Spectrometry Reviews, 26:185–222.
  • Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P., Hildebrandt Ruiz, L., Fortner, E., Williams, L. R., Wilson, K. R., Surratt, J. D., Donahue, N. M., Jayne, J. T., and Worsnop, D. R. (2015). Elemental Ratio Measurements of Organic Compounds Using Aerosol Mass Spectrometry: Characterization, Improved Calibration, and Implications. Atmos. Chem. Phys., 15:253–272, doi:10.5194/acp-15-253-2015.
  • Cerully, K. M., Bougiatioti, A., Hite, Jr., J. R., Guo, H., Xu, L., Ng, N. L., Weber, R., and Nenes, A. (2015). On the Link Between Hygroscopicity, Volatility, and Oxidation State of Ambient and Water Soluble Aerosols in the Southeastern United States. Atmos. Chem. Phys., 15:8679–8694, doi:10.5194/acp-15-8679-2015.
  • Cheung, H. H. Y., Yeung, M. C., Li, Y. J., Lee, B. P., and Chan, C. K. (2015). Relative Humidity-Dependent HTDMA Measurements of Ambient Aerosols at the HKUST Supersite in Hong Kong, China. Aerosol Sci. Technol., 49:643–654, doi:10.1080/02786826.2015.1058482.
  • Clegg, S. L., Brimblecombe, P., and Wexler, A. S. (2016). Extended AIM Aerosol Thermodynamics Model Website. http://www.aim.env.uea.ac.uk/aim/aim.php, accessed 22-Jan-2016.
  • Clegg, S. L., and Seinfeld, J. H. (2006a). Thermodynamic Models of Aqueous Solutions Containing Inorganic Electrolytes and Dicarboxylic Acids at 298.15 K. I. The Acids as Non-Dissociating Components. J. Phys. Chem. A, 110:5692–5717.
  • Clegg, S. L., and Seinfeld, J. H. (2006b). Thermodynamic Models of Aqueous Solutions Containing Inorganic Electrolytes and Dicarboxylic Acids at 298.15 K. II. Systems Including Dissociation Equilibria. J. Phys. Chem. A, 110:5718–5734.
  • DeCarlo, P. F., Dunlea, E. J., Kimmel, J. R., Aiken, A. C., Sueper, D., Crounse, J., Wennberg, P. O., Emmons, L., Shinozuka, Y., Clarke, A., Zhou, J., Tomlinson, J., Collins, D. R., Knapp, D., Weinheimer, A. J., Montzka, D. D., Campos, T., and Jimenez, J. L. (2008). Fast Airborne Aerosol Size and Chemistry Measurements Above Mexico City and Central Mexico During the MILAGRO Campaign. Atmos. Chem. Phys., 8:4027–4048, doi:10.5194/acp-8-4027-2008.
  • Docherty, K. S., Aiken, A. C., Huffman, J. A., Ulbrich, I. M., DeCarlo, P. F., Sueper, D., Worsnop, D. R., Snyder, D. C., Peltier, R. E., Weber, R. J., Grover, B. D., Eatough, D. J., Williams, B. J., Goldstein, A. H., Ziemann, P. J., and Jimenez, J. L. (2011). The 2005 Study of Organic Aerosols at Riverside (SOAR-1): Instrumental Intercomparisons and Fine Particle Composition. Atmos. Chem. Phys., 11:12387–12420, doi:10.5194/acp-11-12387-2011.
  • Docherty, K. S., Jaoui, M., Corse, E., Jimenez, J. L., Offenberg, J. H., Lewandowski, M., and Kleindienst, T. E. (2013). Collection Efficiency of the Aerosol Mass Spectrometer for Chamber-Generated Secondary Organic Aerosols. Aerosol Sci. Technol., 47:294–309, doi:10.1080/02786826.2012.752572.
  • Docherty, K. S., Lewandowski, M., and Jimenez, J. L. (2015). Effect of Vaporizer Temperature on Ambient Non-Refractory Submicron Aerosol Composition and Mass Spectra Measured by the Aerosol Mass Spectrometer. Aerosol Sci. Technol., 49:485–494, doi:10.1080/02786826.2015.1042100.
  • Drewnick, F., Diesch, J.-M., Faber, P., and Borrmann, S. (2015). Aerosol Mass Spectrometry: Particle-Vaporizer Interactions and Their Consequences for the Measurements. Atmos. Meas. Tech., 8:3811–3830, doi:10.5194/amt-8-3811-2015.
  • Drewnick, F., Schwab, J. J., Hogrefe, O., Peters, S., Husain, L., Diamond, D., Weber, R., and Demerjian, K. L. (2003). Intercomparison and Evaluation of Four Semi-Continuous PM2.5 Sulfate Instruments. Atm. Env., 37:3335–3350.
  • Dzepina, K., Arey, J., Marr, L. C., Worsnop, D. R., Salcedo, D., Zhang, Q., Onasch, T. B., Molina, L. T., Molina, M. J., and Jimenez, J. L. (2007). Detection of Particle-Phase Polycyclic Aromatic Hydrocarbons in Mexico City using an Aerosol Mass Spectrometer. Int. J. Mass Spec., 263:152–170.
  • Engelhart, G. J., Hildebrandt, L., Kostenidou, E., Mihalopoulos, N., Donahue, N. M., and Pandis, S. N. (2011). Water Content of Aged Aerosol. Atmos. Chem. Phys., 11:911–920, doi:10.5194/acp-11-911-2011.
  • Froyd, K. D., Murphy, S. M., Murphy, D. M., de Gouw, J. A., Eddingsaas, N. C., and Wennberg, P. O. (2010). Contribution of Isoprene-Derived Organosulfates to Free Tropospheric Aerosol Mass. Proc. Nat. Acad. Sci. USA, 107:21360–21365, doi:10.1073/pnas.1012561107.
  • Fry, J. L., Draper, D. C., Zarzana, K. J., Campuzano-Jost, P., Day, D. A., Jimenez, J. L., Brown, S. S., Cohen, R. C., Kaser, L., Hansel, A., Cappellin, L., Karl, T., Hodzic Roux, A., Turnipseed, A., Cantrell, C., Lefer, B. L., and Grossberg, N. (2013). Observations of Gas-and Aerosol-Phase Organic Nitrates at BEACHON-RoMBAS 2011. Atmos. Chem. Phys., 13:8585–8605, doi:10.5194/acp-13-8585-2013.
  • Gunthe, S. S., King, S. M., Rose, D., Chen, Q., Roldin, P., Farmer, D. K., Jimenez, J. L., Artaxo, P., Andreae, M. O., Martin, S. T., and Pöschl, U. (2009). Cloud Condensation Nuclei in Pristine Tropical Tainforest air of Amazonia: Size-Resolved Measurements and Modeling of Atmospheric Aerosol Composition and CCN Activity. Atmos. Chem. Phys., 9:7551–7575, doi:10.5194/acp-9-7551-2009.
  • Gysel, M., Crosier, J., Topping, D. O., Whitehead, J. D., Bower, K. N., Cubison, M. J., Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H. (2007). Closure Study Between Chemical Composition and Hygroscopic Growth of Aerosol Particles During TORCH2. Atmos. Chem. Phys., 7:6131–6144.
  • Hildebrandt, L., Donahue, N. M., and Pandis, S. N. (2009). High Formation of Secondary Organic Aerosol from the Photo-Oxidation of Toluene. Atmos. Chem. Phys., 9:2973–2986, doi:10.5194/acp-9-2973-2009.
  • Hogrefe, O., Drewnick, F., Lala, G. G., Schwab, J. J., and Demerjian, K. L. (2004a). Development, Operation and Applications of an Aerosol Generation, Calibration and Research Facility. Aerosol Sci. Technol., 38:196–214.
  • Hogrefe, O., Schwab, J. J., Drewnick, F., Lala, G. G., Peters, S., Demerjian, K. L., Rhoads, K., Felton, H. D., Rattigan, O. V., Husain, L., and Dutkiewicz, V. A. (2004b). Semicontinuous PM2.5 Sulfate and Nitrate Measurements at an Urban and a Rural Location in New York: PMTACS-NY Summer 2001 and 2002 Campaigns. J. Air & Waste Manage. Assoc., 54:1040–1060.
  • Jayne, J. T., Canagaratna, M. R., Boudries, H., Jimenez, J. L., Worsnop, D. R., Allan, J., Alfarra, R., Williams, P., Bower, K., and Coe, H. (2002). Atmospheric Aerosol Chemistry Measured with an Aerosol Mass Spectrometer. 223rd American Chemical Society National Meeting, Environmental Award Symposium for Roger Atkinson, Paper ENVI-111, Orlando, FL, April 2002.
  • Jayne, J. T., Leard, D. C., Zhang, X., Davidovits, P., Smith, K. A., Kolb, C. E., and Worsnop, D. R. (2000). Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles. Aerosol Sci. Technol., 33:49–70, 10.1080/027868200410840.
  • Jimenez, J. L., Jayne, J. T., Shi, Q., Kolb, C. E., Worsnop, D. R., Yourshaw, I., Seinfeld, J. H., Flagan, R. C., Zhang, X., Smith, K. A., Morris, J., and Davidovits, P. (2003). Ambient Aerosol Sampling Using the Aerodyne Aerosol Mass Spectrometer. J. Geophys. Res., 108:8425, doi:10.1029/2001JD001213.
  • Kroll, J. H., Smith, J. D., Che, D. L., Kessler, S. H., Worsnop, D. R., and Wilson, K. R. (2009). Measurement of Fragmentation and Functionalization Pathways in the Heterogeneous Oxidation of Oxidized Organic Aerosol. Phys. Chem. Chem. Phys, 11:8005–8014, doi: 10.1039/b905289e.
  • Kuwata, M., Zorn, S. R., and Martin, S. T. (2012). Using Elemental Ratios to Predict the Density of Organic Material Composed of Carbon, Hydrogen, and Oxygen. Environ. Sci. Technol., 46(2):787–794, doi:10.1021/es202525q.
  • Lahaye, R. J. W. E., Kleyn, A. W., Stolte, S., and Holloway, S. (1995). The Scattering of Ar from Ag(111): A Molecular Dynamics Study. Surface Science, 338:169–182.
  • Lambe, A. T., Onasch, T. B., Massoli, P., Croasdale, D. R., Wright, J. P., Ahern, A. T., Williams, L. R., Worsnop, D. R., Brune, W. H., and Davidovits, P. (2011). Laboratory Studies of the Chemical Composition and Cloud Condensation Nuclei (CCN) Activity of Secondary Organic Aerosol (SOA) and Oxidized Primary Organic Aerosol (OPOA). Atmos. Chem. Phys., 11:8913–8928, doi:10.5194/acp-11-8913-2011.
  • Levin, E. J. T., Prenni, A. J., Palm, B. B., Day, D. A., Campuzano-Jost, P., Winkler, P. M., Kreidenweis, S. M., DeMott, P. J., Jimenez, J. L., and Smith, J. N. (2014). Size-Resolved Aerosol Composition and Its Link to Hygroscopicity at a Forested Site in Colorado. Atmos. Chem. Phys., 14:2657–2667, doi:10.5194/acp-14-2657-2014.
  • Li, R., Palm, B. B., Borbon, A., Graus, M., Warneke, C., Ortega, A. M., Day, D. A., Brune, W. H., Jimenez, J. L., and de Gouw, J. A. (2013). Laboratory Studies on Secondary Organic Aerosol Formation from Crude Oil Vapors. Environ. Sci. Technol., 47:12566–12574, doi:10.1021/es402265y.
  • Liao, J., Froyd, K. D., Murphy, D. M., Keutsch, F. N., Yu, G., Wennberg, P. O., Clair, J. M.St., Crounse, J. D., Wisthaler, A., Mikoviny, T., Jimenez, J. L., Campuzano-Jost, P., Day, D. A., Hu, W., Ryerson, T. B., Pollack, I. B., Peischl, J., Anderson, B. E., Ziemba, L. D., Blake, D. R., Meinardi, S., and Diskin, G. (2015). Airborne Measurements of Organosulfates Over the Continental U.S.. J. Geophys. Res. Atmos., 120:2990–3005, doi: 10.1002/2014JD022378.
  • Lide, D. R. (1991). CRC Handbook of Chemistry and Physics. CRC Press, USA.
  • Matthew, B. M., Middlebrook, A. M., and Onasch, T. B. (2008). Collection efficiencies in an Aerodyne aerosol mass spectrometer as a function of particle phase for laboratory generated aerosols. Aerosol Sci. Technol., 42:884–898, doi: 10.1080/02786820802356797.
  • Mei, F., Hayes, P. L., Ortega, A., Taylor, J. W., Allan, J. D., Gilman, J., Kuster, W., de Gouw, J., Jimenez, J. L., and Wang, J. (2013). Droplet Activation Properties of Organic Aerosols Observed at an Urban site During CalNex-LA. J. Geophys. Res. Atmos., 118:2903–2917, doi:10.1002/jgrd.50285.
  • Mensah, A. A., Buchholz, A., Mentel, T., Tillmann, R., and Kiendler-Scharr, A. (2011). Aerosol Mass Spectrometric Measurements of Stable Crystal Hydrates of Oxalates and Inferred Relative Ionization Efficiency of Water. J. Aerosol Sci., 42:11–19, doi:10.1016/j.jaerosci.2010.10.003.
  • Middlebrook, A. M., Bahreini, R., Jimenez, J. L., and Canagaratna, M. R. (2012). Evaluation of Composition-Dependent Collection Efficiencies for the Aerodyne Aerosol Mass Spectrometer using Field Data. Aerosol Sci. Technol., 46:258–271.doi:10.1080/02786826.2011.620041.
  • Murphy, D. M. (2016). The Effects of Molecular Weight and Thermal Decomposition on the Sensitivity of a Thermal Desorption Aerosol Mass Spectrometer. Aerosol Sci. Technol., 50:118–125. doi: 10.1080/02786826.2015.1136403.
  • NIST Chemistry WebBook. (2016). http://webbook.nist.gov/chemistry/ accessed 15-Jan-2016.
  • Northway, M. J., Jayne, J. T., Toohey, D. W., Canagaratna, M. R., Trimborn, A., Akiyama, K.-I., Shimono, A., Jimenez, J. L., DeCarlo, P. F., Wilson, K. R., and Worsnop, D. R. (2007). Demonstration of a VUV Lamp Photoionization Source for Improved Organic Speciation in an Aerosol Mass Spectrometer. Aerosol Sci. Technol., 41:829–839.
  • Petters, M. D., and Kreidenweis, S. M. (2007). A Single Parameter Representation of Hygroscopic Growth and Cloud Condensation Nucleus Activity. Atmos. Chem. Phys., 7:1961–1971, doi:10.5194/acp-7-1961-2007.
  • Petters, M. D., Kreidenweis, S. M., and Ziemann, P. J. (2016). Prediction of Cloud Condensation Nuclei Activity for Organic Compounds Using Functional Group Contribution Methods. Geosci. Model Dev., 9:111–124, doi:10.5194/gmd-9-111-2016.
  • Quinn, P. K., Bates, T. S., Coffman, D., Onasch, T. B., Worsnop, D., Baynard, T., de Gouw, J. A., Goldan, P. D., Kuster, W. C., Williams, E., Roberts, J. M., Lerner, B., Stohl, A., Pettersson, A., and Lovejoy, E. R. (2006). Impacts of sources and aging on submicrometer aerosol properties in the marine boundary layer across the Gulf of Maine. J. Geophys. Res., 111:D23S36, 10.1029/2006JD007582.
  • Robinson, C. B., Kimmel, J. R., David, D. E., Jayne, J. T., Trimborn, A., Worsnop, D. R., and Jimenez, J. L. (2011). Thermal Desorption Metastable Atom Bombardment Ionization Aerosol Mass Spectrometer. Int. J. Mass Spec., 303:164–172, doi:10.1016/j.ijms.2011.01.027.
  • Salcedo, D., Onasch, T. B., Dzepina, K., Canagaratna, M. R., Zhang, Q., Huffman, J. A., DeCarlo, P. F., Jayne, J. T., Mortimer, P., Worsnop, D. R., Kolb, C. E., Johnson, K. S., Zuberi, B., Marr, L. C., Volkamer, R., Molina, L. T., Molina, M. J., Cardenas, B., Bernabé, R. M., Márquez, C., Gaffney, J. S., Marley, N. A., Laskin, A., Shutthanandan, V., Xie, Y., Brune, W., Lesher, R., Shirley, T., and Jimenez, J. L. (2006). Characterization of Ambient Aerosols in Mexico City During the MCMA-2003 Campaign with Aerosol Mass Spectrometry: Results from the CENICA Supersite. Atmos. Chem. Phys., 6:925–946, doi:10.5194/acp-6-925-2006.
  • Setyan, A., Zhang, Q., Merkel, M., Knighton, W. B., Sun, Y. L., Song, C., Shilling, J. E., Onasch, T. B., Herndon, S. C., Worsnop, D. R., Fast, J. D., Zaveri, R. A., Berg, L. K., Wiedensohler, A., Flowers, B. A., Dubey, M. K., and Subramanian, R. (2012). Characterization of Submicron Particles Influenced by Mixed Biogenic and Anthropogenic Emissions Using High-Resolution Aerosol Mass Spectrometry: Results from CARES. Atmos. Chem. Phys., 12:8131–8156, doi:10.5194/acp-12-8131-2012.
  • Silva, P. J., Davidovits, P., Jayne, J. T., Canagaratna, M. R., Worsnop, D. R., and Kolb, C. E. (2001). Quantitative Analysis of Submicron Aerosol Particles Using a Real-Time Aerosol Mass Spectrometer. Pittcon Conference, New Orleans, LA.
  • Slowik, J. G., Stainken, K., Davidovits, P., Williams, L. R., Jayne, J. T., Kolb, C. E., Worsnop, D. R., Rudich, Y., DeCarlo, P., and Jimenez, J. L. (2004). Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 2: Application to Combustion Generated Soot Particles as a Function of Fuel Equivalence Ratio. Aerosol Sci. Technol., 38:1206–1222, doi:10.1080/027868290903916.
  • Sykes, D. C., Woods, III, E., Smith, G. D., Baer, T., and Miller, R. E. (2002). Thermal Vaporization-Vacuum Ultraviolet Laser Ionization Time-of-Flight Mass Spectrometry of Single Aerosol Particles. Anal. Chem., 74:2048–2952.
  • Takegawa, N., Miyakawa, T., Kawamura, K., and Kondo, Y. (2007). Contribution of Selected Dicarboxylic and ω-Oxocarboxylic acids in Ambient Aerosol to the m/z 44 Signal of an Aerodyne Aerosol Mass Spectrometer. Aerosol Sci. Technol., 41:418–437.
  • Takegawa, N., Miyazaki, Y., Kondo, Y., Komazaki, Y., Miyakawa, T., Jimenez, J. L., Jayne, J. T., Worsnop, D. R., Allan, J., and Weber, R. J. (2005). Characterization of an Aerodyne Aerosol Mass Spectrometer (AMS): Intercomparison with other Aerosol Instruments. Aerosol Sci. Technol., 39:760–770.
  • Timonen, H., Aurela, M., Carbone, S., Saarnio, K., Saarikoski, S., Mäkelä, T., Kulmala, M., Kerminen, V.-M., Worsnop, D. R., and Hillamo, R. (2010). High Time-Resolution Chemical Characterization of the Water-Soluble Fraction of Ambient Aerosols with PILS-TOC-IC and AMS. Atmos. Meas. Tech., 3:1063–1074, doi:10.5194/amt-3-1063-2010.
  • Washenfelder, R. A., Attwood, A. R., Brock, C. A., Guo, H., Xu, L., Weber, R. J., Ng, N. L., Allen, H. M., Ayres, B. R., Baumann, K., Cohen, R. C., Draper, D. C., Duffey, K. C., Edgerton, E., Fry, J. L., Hu, W. W., Jimenez, J. L., Palm, B. B., Romer, P., Stone, E. A., Wooldridge, P. J., and Brown, S. S. (2015). Biomass Burning Dominates Brown Carbon Absorption in the Rural Southeastern United States. Geophys. Res. Lett., 42:653–664, doi:10.1002/2014GL062444.
  • Wong, J. P. S., Zhou, S., and Abbatt, J. P. D. (2015). Changes in Secondary Organic Aerosol Composition and Mass due to Photolysis: Relative Humidity Dependence. J. Phys. Chem. A, 119:4309–4316, doi:10.1021/jp506898c.
  • Worsnop, D. R. (2007). AMS Users Meeting presentations in 2003, 2005. http://cires1.colorado.edu/jimenez-group/UsrMtgs/Doug_Boulder_March03.pdf, http://cires1.colorado.edu/jimenez-group/UsrMtgs/UsersMtg4/AMSusersIntro_Worsnop.pdf, http://cires1.colorado.edu/jimenez-group/UsrMtgs/UsersMtg8/DRW.intro.AMSuser.pdf (accessed 1 February 2016).
  • Worsnop, D. R., Jayne, J. T., Canagaratna, M. R., Boudries, H., Onasch, T., Mortimer, P., Williams, L., Jimenez, J., Zhang, Q., Coe, H., Allan, J., and Alfarra, R. (2004a). Field Applications of an Aerosol Mass Spectrometer: What are we Learning about Aerosol Organics? Geophys. Res. Abstracts, 6:07659 SRef-ID: 1607-7962/gra/EGU04-A-07659.
  • Worsnop, D. R., Jayne, J. T., Canagaratna, M. R., Boudries, H., Onasch, T., Mortimer, P., Williams, L., Jimenez, J., Zhang, Q., Coe, H., Allan, J., Alfarra, R., Slowik, J., and Davidovits, P. (2004b). Field Applications of an Aerosol Mass Spectrometer: What are we Learning about Atmospheric Aerosol Chemical and Microphysical Properties? Proceedings of the 52nd ASMS Conference on Mass Spectrometry and Allied Topics, Nashville, Tennessee, May 2004b.
  • Worsnop, D., Jayne, J., Canagaratna, M. R., Boudries, H., Kolb, C., Jimenez, J. L. (2002). Aerosol Chemical and Microphysics Measured With an Aerosol Mass Spectrometer. Eos Trans. AGU, 83(47): Fall Meet. Suppl., Abstract A11F-02.
  • Worton, D. R., Isaacman, G., Gentner, D. R., Dallmann, T. R., Chan, A. W. H., Ruehl, C., Kirchstetter, T. W., Wilson, K. R., Harley, R. A., and Goldstein, A. H. (2014). Lubricating Oil Dominates Primary Organic Aerosol Emissions from Motor Vehicles. Environ. Sci. Technol., 48:3698–3706, doi:10.1021/es405375j.
  • Ye, P., Ding, X., Hakala, J., Hofbauer, V., Robinson, E. S., and Donahue, N. M. (2016). Vapor Wall Loss of Semi-Volatile Organic Compounds in Teflon Chamber. Aerosol Sci. Technol., 50(8):822–834.
  • Zelenyuk, A., Imre, D., and Cuadra-Rodriguez, L. (2006). Evaporation of Water from Particles in the Aerodynamic Lens inlet: An Experimental Study. Anal Chem., 78:6942–6947.
  • Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R. (2007). Ubiquity and Dominance of Oxygenated Species in Organic Aerosols in Anthropogenically—Influenced Northern Hemisphere Mid-latitudes. Geophys. Res. Lett., 34:L13801, doi:10.1029/2007GL029979.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.