2,854
Views
27
CrossRef citations to date
0
Altmetric
Articles

A novel quartz crystal cascade impactor for real-time aerosol mass distribution measurement

, , , &
Pages 971-983 | Received 18 Apr 2016, Accepted 28 Jun 2016, Published online: 18 Jul 2016

References

  • Arffman, A., Kuuluvainen, H., Harra, J., Vuorinen, O., Juuti, P., Yli-Ojanperä, J., Mäkelä, J., and Keskinen, J. (2015). The Critical Velocity of Rebound Determined for Sub-micron Silver Particles with a Variable Nozzle Area Impactor. J. Aerosol Sci., 86:32–43.
  • Arffman, A., Marjamäki, M., and Keskinen, J. (2011). Simulation of Low Pressure Impactor Collection Efficiency Curves. J. Aerosol Sci., 42(5):329–340.
  • Bateman, A. P., Belassein, H., and Martin, S. T. (2014). Impactor Apparatus for the Study of Particle Rebound: Relative Humidity and Capillary Forces. Aerosol Sci. Technol., 48(1):42–52.
  • Belosi, F., Ferrari, S., Poluzzi, V., Santachiara, G., and Prodi, F. (2013). Comparison Between Two Different Nanoparticle Size Spectrometers. J. Air Waste Manage. Assoc., 63(8):918–925.
  • Chen, D.-R., and Pui, D. Y. (1999). A High Efficiency, High Throughput Unipolar Aerosol Charger for Nanoparticles. J. Nanopart. Res., 1(1):115–126.
  • Chen, S.-C., Tsai, C.-J., Chen, H.-D., Huang, C.-Y., and Roam, G.-D. (2011). The Influence of Relative Humidity on Nanoparticle Concentration and Particle Mass Distribution Measurements by the MOUDI. Aerosol Sci. Technol., 45(5):596–603.
  • Chow, J. C., and Watson, J. G. (2007). Review of Measurement Methods and Compositions for Ultrafine Particles. Aerosol Air Qual. Res., 7(2):121–173.
  • Chuan, R. L. (1970). An Instrument for the Direct Measurement of Particulate Mass. J. Aerosol Sci., 1(2):111–113.
  • Chuan, R. L. (1974). Particulate Mass Measurement by Piezoelectric Crystal. NBS Spec. Publ., 412:137–148.
  • Cumpson, P. J., and Seah, M. P. (1990). The Quartz Crystal Microbalance; Radial/Polar Dependence of Mass Sensitivity Both on and off the Electrodes. Meas. Sci. Technol., 1(7):544–555.
  • de la Mora, J. F., and Schmidt-Ott, A. (1993). Performance of a Hypersonic Impactor with Silver Particles in the 2 nm Range. J. Aerosol Sci., 24(3):409–415.
  • Duan, H., Romay, F. J., Li, C., Naqwi, A., Deng, W., and Liu, B. Y. (2016). Generation of Monodisperse Aerosols by Combining Aerodynamic Flow-focusing and Mechanical Perturbation. Aerosol Sci. Technol., 50(1):17–25.
  • Fang, C. P., McMurry, P. H., Marple, V. A., and Rubow, K. L. (1991). Effect of Flow-induced Relative Humidity Changes on Size Cuts for Sulfuric Acid Droplets in the Microorifice Uniform Deposit Impactor (MOUDI). Aerosol Sci. Technol., 14(2):266–277.
  • Fang, G.-C., Chang, C.-Y., Tsai, J.-H., and Lin, C.-C. (2014). The Size Distributions of Ambient Air Metallic Pollutants by Using a Multi-Stage MOUDI Sampler. Aerosol Air Qual. Res., 14(3):970–980.
  • Flagan, R. C. (1982). Compressible Flow Inertial Impactors. J. Colloid Interf. Sci., 87(1):291–299.
  • Hering, S. V. (1987). Calibration of the QCM Impactor for Stratospheric Sampling. Aerosol Sci. Technol., 7(3):257–274.
  • Huang, C.-H., Tsai, C.-J., and Shih, T.-S. (2001). Particle Collection Efficiency of an Inertial Impactor with Porous Metal Substrates. J. Aerosol Sci., 32(9):1035–1044.
  • Järvinen, A., Aitomaa, M., Rostedt, A., Keskinen, J., and Yli-Ojanperä, J. (2014). Calibration of the New Electrical Low Pressure Impactor (ELPI+). J. Aerosol Sci., 69:150–159.
  • Kanazawa, K. K., and Gordon, J. G. (1985). The Oscillation Frequency of a Quartz Resonator in Contact with Liquid. Anal. Chim. Acta, 175:99–105.
  • Kavouras, I. G., and Koutrakis, P. (2001). Use of Polyurethane Foam as the Impaction Substrate/Collection Medium in Conventional Inertial Impactors. Aerosol Sci. Technol., 34(1):46–56.
  • Keskinen, J., Pietarinen, K., and Lehtimäki, M. (1992). Electrical Low Pressure Impactor. J. Aerosol Sci., 23(4):353–360.
  • Liu, B. Y., Romay, F. J., Dick, W. D., Woo, K.-S., and Chiruta, M. (2010). A Wide-Range Particle Spectrometer for Aerosol Measurement from 0.010 μm to 10 μm. Aerosol Air Qual. Res., 10:125–139.
  • Liu, C.-N., Awasthi, A., Hung, Y.-H., and Tsai, C.-J. (2013). Collection Efficiency and Interstage Loss of Nanoparticles in Micro-Orifice-Based Cascade Impactors. Atmos. Environ., 69:325–333.
  • Marjamäki, M., Keskinen, J., Chen, D.-R., and Pui, D. Y. (2000). Performance Evaluation of the Electrical Low-pressure Impactor (ELPI). J. Aerosol Sci., 31(2):249–261.
  • Marple, V., Rubow, K., Ananth, G., and Fissan, H. J. (1986). Micro-orifice Uniform Deposit Impactor. J. Aerosol Sci., 17(3):489–494.
  • Marple, V. A. (1970). Fundamental Study of Inertial Impactors. Minnesota Univ., Minneapolis. Particle Technology Lab Retrieved from http://www.osti.gov/scitech/biblio/4095434
  • Marple, V. A. (2004). History of Impactors—The First 110 Years. Aerosol Sci. Technol., 38(3):247–292.
  • Marple, V. A., Olson, B. A., Santhanakrishnan, K., Mitchell, J. P., Murray, S. C., and Hudson-Curtis, B. L. (2003). Next Generation Pharmaceutical Impactor (A New Impactor for Pharmaceutical Inhaler Testing). Part II: Archival Calibration. J. Aerosol Med., 16(3):301–324.
  • Marple, V. A., Rubow, K. L., and Behm, S. M. (1991). A Microorifice Uniform Deposit Impactor (MOUDI): Description, Calibration, and Use. Aerosol Sci. Technol., 14(4):434–446.
  • Marple, V. A., Rubow, K. L., and Olson, B. A. (2001). Inertial, Gravitational, Centrifugal, and Thermal Collection Techniques. Aerosol Meas.: Princ., Tech. Appl., 2:229–260.
  • Olson, M. R., Schauer, J. J., Powell, M., Rutter, A. P., and Shafer, M. M. (2014). Aerodynamic and Chemical Characteristics of Six Engineered Nanomaterial Powders. Aerosol Air Qual. Res., 14(1):74–85.
  • Pak, S. S., Liu, B. Y., and Rubow, K. L. (1992). Effect of Coating Thickness on Particle Bounce in Inertial Impactors. Aerosol Sci. Technol., 16(3):141–150.
  • Pui, D. Y., Romay-Novas, F., and Liu, B. Y. (1987). Experimental Study of Particle Deposition in Bends of Circular Cross Section. Aerosol Sci. Technol., 7(3):301–315.
  • Rader, D. J., and Marple, V. A. (1985). Effect of Ultra-Stokesian Drag and Particle Interception on Impaction Characteristics. Aerosol Sci. Technol., 4(2):141–156.
  • Rodahl, M., Höök, F., and Kasemo, B. (1996). QCM Operation in Liquids: An Explanation of Measured Variations in Frequency and Q Factor with Liquid Conductivity. Anal. Chem., 68(13):2219–2227.
  • Romay-Novas, F. J., and Pui, D. Y. (1988). Generation of Monodisperse Aerosols in the 0.1–1.0-μm Diameter Range Using a Mobility Classification–Inertial Impaction Technique. Aerosol Sci. Technol., 9(2):123–131.
  • Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys., 155(2):206–222.
  • Siegford, K. L., Marple, V. A., and Rubow, K. L. (1994). A Multiplet Reduction Impactor for the Vibrating Orifice Aerosol Generator. J. Aerosol Sci., 25(S1):113–114.
  • Stein, S. W., Turpin, B. J., Cai, X., Huang, P.-F., and McMurry, P. H. (1994). Measurements of Relative Humidity-dependent Bounce and Density for Atmospheric Particles using the DMA-impactor Technique. Atmos. Environ., 28(10):1739–1746.
  • Swietlicki, E., Hansson, H. C., Hämeri, K., Svenningsson, B., Massling, A., McFiggans, G., McMurry, P. H., Petäjä, T., Tunved, P., Gysel, M., and Topping, D. (2008). Hygroscopic Properties of Submicrometer Atmospheric Aerosol Particles Measured with H–TDMA Instruments in Various Environments—A Review. Tellus B, 60(3):432–469.
  • Takahashi, T. (1972). Electric Charge of Small Particles (1–40 μ). J. Atmos. Sci., 29(5):921–928.
  • Tropp, R. J., Kuhn, P. J., and Brock, J. R. (1980). A New Method for Measuring the Particle Size Distribution of Aerosols. Rev. Sci. Instrum., 51(4):516–520.
  • Tsai, C.-J., Liu, C.-N., Hung, S.-M., Chen, S.-C., Uang, S.-N., Cheng, Y.-S., and Zhou, Y. (2012). Novel Active Personal Nanoparticle Sampler for the Exposure Assessment of Nanoparticles in Workplaces. Environ. Sci. Technol., 46(8):4546–4552.
  • Turner, J. R., and Hering, S. V. (1987). Greased and Oiled Substrates as Bounce-Free Impaction Surfaces. J. Aerosol Sci., 18(2):215–224.
  • Ude, S., and de la Mora, J. F. (2003). Hypersonic Impaction with Molecular Mass Standards. J. Aerosol Sci., 34(9):1245–1266.
  • Vanderpool, R. W., Lundgren, D. A., Marple, V. A., and Rubow, K. L. (1987). Cocalibration of Four Large-Particle Impactors. Aerosol Sci. Technol., 7(2):177–185.
  • Vasiliou, J. G., Sorensen, D., and McMurry, P. H. (1999). Sampling at Controlled Relative Humidity with a Cascade Impactor. Atmos. Environ., 33(7):1049–1056.
  • Ward, M. D., and Buttry, D. A. (1990). In Situ Interfacial Mass Detection with Piezoelectric Transducers. Science, 249(4972):1000–1007.
  • Watson, J. G., Chow, J. C., Sodeman, D. A., Lowenthal, D. H., Chang, M.-C. O., Park, K., and Wang, X. (2011). Comparison of Four Scanning Mobility Particle Sizers at the Fresno Supersite. Particuology, 9(3):204–209.
  • Winkler, P. (1974). Relative Humidity and the Adhesion of Atmospheric Particles to the Plates of Impactors. J. Aerosol Sci., 5(3):235–240.
  • Wudy, F., Multerer, M., Stock, C., Schmeer, G., and Gores, H. J. (2008). Rapid Impedance Scanning QCM for Electrochemical Applications Based on Miniaturized Hardware and High-performance Curve Fitting. Electrochim. Acta, 53(22):6568–6574.
  • Zelenyuk, A., Cai, Y., and Imre, D. (2006). From Agglomerates of Spheres to Irregularly Shaped Particles: Determination of Dynamic Shape Factors from Measurements of Mobility and Vacuum Aerodynamic Diameters. Aerosol Sci. Technol., 40(3):197–217.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.