1,924
Views
30
CrossRef citations to date
0
Altmetric
Articles

Coalescence-based assessment of aerosol phase state using dimers prepared through a dual-differential mobility analyzer technique

&
Pages 1294-1305 | Received 02 May 2016, Accepted 30 Jul 2016, Published online: 31 Aug 2016

References

  • Angell, C. A., Stell, R. C., and Sichina, W. (1982). Viscosity-Temperature Function for Sorbitol from Combined Viscosity and Differential Scanning Calorimetry Studies. J. Phys. Chem, 86:1540–1542.
  • Arenas, K. J. L., Schill, S. R., Malla, A., and Hudson, P. K. (2012). Deliquescence Phase Transition Measurements by Quartz Crystal Microbalance Frequency Shifts. J. Phys. Chem. A, 116:7658–7667.
  • Bateman, A. P., Bertram, A. K., and Martin, S. T. (2015). Hygroscopic Influence on the Semisolid-to-Liquid Transition of Secondary Organic Materials. J. Phys. Chem. A, 119:4386–4395.
  • Baustian, K. J., Wise, M. E., Jensen, E. J., Schill, G. P., Freedman, M. A., and Tolbert, M. A. (2013). State Transformations and Ice Nucleation in Amorphous (Semi-)Solid Organic Aerosol. Atmos. Chem. Phys., 13:5615–5628.
  • Berkemeier, T., Shiraiwa, M., Pöschl, U., and Koop, T. (2014). Competition Between Water Uptake and Ice Nucleation by Glassy Organic Aerosol Particles. Atmos. Chem. Phys., 14:12513–12531.
  • Biskos, G., Paulsen D., Russell, L. M., Buseck, P. R., and Martin, S. T. (2006). Prompt Deliquescence and Efflorescence of Aerosol Nanoparticles. Atmos. Chem. Phys., 6:4633–4642.
  • Bones, D. L., Reid, J. P., Lienhard, D. M., and Krieger, U. K. (2012). Comparing the Mechanism of Water Condensation and Evaporation in Glassy Aerosol. Proc. Natl. Acad. Sci. U. S. A., 109:11613–11618.
  • Borra, J. P., Camelot, D., Chou, K. L., Kooyman, P. J., Marijnissen, J. C. M., and Scarlett, B. (1999). Bipolar Coagulation for Powder Production: Micro-Mixing Inside Droplets. J. Aerosol Sci., 30:945–958.
  • Brooks, S. D., Wise, M. E., Cushing, M., and Tolbert, M. A. (2002). Deliquescence Behavior of Organic/Ammonium Sulfate Aerosol. Geophys. Res. Lett., 29:1917.
  • Cappa, C. D., Lovejoy, E. R., and Ravishankara, A. R. (2008). Evidence for Liquid-Like and Nonideal Behavior of a Mixture of Organic Aerosol Components. Proc. Natl. Acad. Sci. U. S. A., 105:18687–18691.
  • Chan, L. P., and Chan, C. K. (2013). Role of the Aerosol Phase State in Ammonia/Amines Exchange Reactions. Environ. Sci. Technol., 47:5755–5762.
  • Cheng, Y., Su, H., Koop, T., Mikhailov E., and Pöschl, U. (2015). Size Dependence of Phase Transitions in Aerosol Nanoparticles. Nat. Commun., 6:5923.
  • Christensen, S. I., and Petters, M. D. (2012). The Role of Temperature in Cloud Droplet Activation. J. Phys. Chem. A., 116:9706–9717.
  • Ciobanu, V. G., Marcolli, C., Krieger, U. K., Zuend, A., and Peter, T. (2010). Efflorescence of Ammonium Sulfate and Coated Ammonium Sulfate Particles: Evidence for Surface Nucleation. J. Phys. Chem. A, 114:9486–9495.
  • Davies, J. F., and Wilson, K. R. (2015). Nanoscale Interfacial Gradients Formed by the Reactive Uptake of OH Radicals Onto Viscous Aerosol Surfaces. Chem. Sci., 6:7020–7027.
  • Debenedetti, P. G., and Stillinger, F. H. (2001). Supercooled Liquids and the Glass Transition. Nature, 410:259–267.
  • Dette, H. P., and Koop, T. (2015). Glass Formation Processes in Mixed Inorganic/Organic Aerosol Particles. J. Phys. Chem. A, 119:4552–4561.
  • Goldstein, A. H., and Galbally, I. E. (2007). Known and Unexplored Organic Constituents in the Earth's Atmosphere. Environ. Sci. Technol., 41:1514–1521.
  • Gržinić, G., Bartels-Rausch, T., Berkemeier, T., Türler, A., and Ammann, M. (2015). Viscosity Controls Humidity Dependence of N2O5 Uptake to Citric Acid Aerosol. Atmos. Chem. Phys., 15:13615–13625.
  • Hinds, W. C. (1999). Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles (2nd ed.). John Wiley & Sons, New York, pp. 52.
  • Hings, S. S., Wrobel, W. C., Cross, E. S., Worsnop, D. R., Davidovits, P., and Onasch, T. B. (2008). CCN Activation Experiments with Adipic acid: Effect of Particle Phase and Adipic Acid Coatings on Soluble and Insoluble Particles. Atmos. Chem. Phys., 8:3735–3748.
  • Hoppel, W. A. (1985). Ion-Aerosol Attachment Coefficients, Ion Depletion, and the Charge Distribution on Aerosols. J. Geophys. Res., 90:5917–5923.
  • Hosny, N. A., Fitzgerald, C., Tong, C., Kalberer, M., Kuimova, M. K., and Pope, F. D. (2013). Fluorescent Lifetime Imaging of Atmospheric Aerosols: A Direct Probe of Aerosol Viscosity. Faraday Discuss., 165:343.
  • Hutzler, J. S., Colton, R. J., and Ling, A. C. (1972). Viscosities of Some Organic Glasses Used as Trapping Matrices. III. J. Chem. Eng. Data, 17:324–327.
  • Järvinen, E., Ignatius, K., Nichman, L., Kristensen, T. B., Fuchs, C., Hoyle, C. R., Höppel, N, Corbin, J. C., Craven, J., Duplissy, J., Ehrhart, S., El Haddad, I., Frege, C., Gordon, H., Jokinen, T., Kallinger, P., Kirkby, J., Kiselev, A., Naumann, K., Petäjä, T., Pinterich, T., Prevot, A. S. H., Saathoff, H., Schiebel, T., Sengupta, K., Simon, M., Slowik, J. G., Tröstl, J., Virtanen, A., Vochezer, P., Vogt, S., Wagner, A. C., Wagner, R., Williamson, C., Winkler, P. M., Yan, C., Baltensperger, U., Donahue, N. M., Flagen, R. C., Gallagher, M., Hansel, A., Kulmala, M., Stratmann, F., Worsnop, D. R., Möhler, O., Leisner, T., and Schnaiter, M. (2016). Observation of Viscosity Transition in α-Pinene Secondary Organic Aerosol, Atmos. Chem. Phys., 16:4423–4438.
  • Kelly, J. T., and Wexler, A. S. (2006). Water Uptake by Aerosol: Water Activity in Supersaturated Potassium Solutions and Deliquescence as a Function of Temperature. Atmos. Environ., 40:4450–4468.
  • Koop, T., Bookhold, J., Shiraiwa, M., and Pöschl, U. (2011). Glass Transition and Phase State of Organic Compounds: Dependency on Molecular Properties and Implications for Secondary Organic Aerosols in the Atmosphere. Phys. Chem. Chem. Phys., 13:19238–19255.
  • Koponen, I. K., Riipinen, I., Hienola, A., Kulmala, M., and Bilde, M. (2007). Thermodynamic Properties of Malonic, Succinic, and Glutaric Acids: Evaporation Rates and Saturation Vapor Pressures. Environ. Sci. Technol., 41:3926–3933.
  • Lawrence, M. G. (2005). The Relationship Between Relative Humidity and the Dew Point Temperature in Moist Air: A Simple Conversion and Applications. Bull. Amer. Meteorol. Soc., 86:225–233.
  • Lu, J. W., Rickards, A. M. J., Walker, J. S., Knox, K. J., Miles, R. E. H., Reid, J. P., and Signorell, R. (2014). Timescales of Water Transport in Viscous Aerosol: Measurements on Sub-Micron Particles and Dependence on Conditioning History. Phys. Chem. Chem. Phys., 16:9819–9830.
  • Maisels, A., Kruis, F. E., Fissan, H., Rellinghaus, B., and Zähres, H. (2000). Synthesis of Tailored Composite Nanoparticles in the Gas Phase. Appl. Phys. Lett., 77:4431–4433.
  • Marcolli, C., Luo, B. P., and Peter, T. (2004). Mixing of the Organic Aerosol Fractions: Liquids as the Thermodynamically Stable Phases. J. Phys. Chem. A, 108:2216–2224.
  • Mikhailov, E., Vlasenko, S., Martin, S. T., Koop, T., and Pöschl, U. (2009). Amorphous and Crystalline Aerosol Particles Interacting with Water Vapor: Conceptual Framework and Experimental Evidence for Restructuring, Phase Transitions, and Kinetic Limitations. Atmos. Chem. Phys., 9:9491–9522.
  • Montgomery, J. F., Rogak, S. N., Green, S. I., You, Y., and Bertram, A. K. (2015). Structural Change of Aerosol Particle Aggregates with Exposure to Elevated Relative Humidity. Environ. Sci. Technol., 49:12054–12061.
  • Nakanishi, M., and Nozaki, R. (2011). Systematic Study of the Glass Transition in Polyhydric Alcohols. Phys. Rev. E, 83:051503.
  • Nguyen, T. K. V., Petters, M. D., Suda, S. R., Guo, H., Weber, R. J., and Carlton, A. M. (2014). Trends in Particle Phase Liquid Water During the Southern Oxidant and Aerosol Study. Atmos. Chem. Phys., 14:10911–10930.
  • Petters, S. S., and Petters, M. D. (2016). Surfactant Effect on Cloud Condensation Nuclei for Two-Component Internally Mixed Aerosols. J. Geophys. Res. Atmos., 121:1878–1895.
  • Petters, M. D., Kreidenweis, S. M., Snider, J. R., Koehler, K. A., Wang, Q., Prenni, A. J., and DeMott, P. J. (2006). Cloud Droplet Activation of Polymerized Organic Aerosol. Tellus B, 58:196–205.
  • Pfrang, C., Shiraiwa, M., and Pöschl, U. (2011). Chemical Ageing and Transformation of Diffusivity in Semi-Solid Multi-Component Organic Aerosol Particles. Atmos. Chem. Phys., 11:7343–7354.
  • Pokluda, O., Bellehumeur, C., and Vlachopoulos, J. (1997). Modification of Frenkel's Model for Sintering. AIChE J., 43:3253–3256.
  • Power, R. M., Simpson, S. H., Reid, J. P., and Hudson, A. J. (2013). The Transition from Liquid to Solid-Like Behaviour in Ultrahigh Viscosity Aerosol Particles. Chem. Sci., 4:2597–2604.
  • Rader, D. J., and McMurry, P. H. (1986). Application of the Tandem Differential Mobility Analyzer to Studies of Droplet Growth or Evaporation. J. Aerosol Sci., 17:771–787.
  • Renbaum-Wolff, L., Grayson, J. W., Bateman, A. P., Kuwata, M., Sellier, M., Murray, B., Shilling, J. E., Martin, S. T., and Bertram, A. K. (2013). Viscosity of α-Pinene Secondary Organic Material and Implications for Particle Growth and Reactivity. Proc. Natl. Acad. Sci. U. S. A., 110:8014–8019.
  • Robinson, C. B., Schill, G. P., and Tolbert, M. A. (2014). Optical Growth of Highly Viscous Organic/Sulfate Particles. J. Atmos. Chem., 71:145–156.
  • Roth, C. M., Goss, K.-U., and Schwarzenbach, R. P. (2005). Sorption of a Diverse Set of Organic Vapors to Urban Aerosols. Environ. Sci. Technol., 39:6638–6643.
  • Salameh, A. K., and Taylor, L. S. (2006). Role of Deliquescence Lowering in Enhancing Chemical Reactivity in Physical Mixtures. J. Phys. Chem. B, 110:10190–10196.
  • Sarier, N., and Onder, E. (2008). Thermal Insulation Capability of PEG-Containing Polyurethane Foams. Thermochimica Acta, 475:15–21.
  • Schill, G. P., and Tolbert, M. A. (2013). Heterogeneous Ice Nucleation on Phase-Separated Organic-Sulfate Particles: Effect of Liquid vs. Glassy Coatings. Atmos. Chem. Phys., 13:4681–4695.
  • Seinfeld, J. H., and Pandis, S. N. (2006). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (2nd ed.). John Wiley & Sons, Hoboken, pp. 454, 464, 599.
  • Shiraiwa, M., Ammann, M., Koop, T., and Pöschl, U. (2011). Gas Uptake and Chemical Aging of Semisolid Organic Aerosol Particles. Proc. Natl. Acad. Sci. U. S. A., 108:11003–11008.
  • Simperler, A., Kornherr, A., Chopra, R., Bonnet, P. A., Jones, W., Motherwell, W. D. S., and Zifferer, G. (2006). Glass Transition Temperature of Glucose, Sucrose, and Trehalose: An Experimental and in Silico Study. J. Phys. Chem. B, 110:19678–19684.
  • Stolzenburg, M. R., Kreisberg, N. M., and Hering, S. V. (1998). Atmospheric Size Distributions Measured by Differential Mobility optical Particle Size Spectrometry. Aerosol Sci. Technol., 29:402–418.
  • Suda, S. R., and Petters, M. D. (2013). Accurate Determination of Aerosol Activity Coefficients at Relative Humidities up to 99% Using the Hygroscopic Tandem Differential Mobility Analyzer Technique. Aerosol Sci. Technol., 47:991–1000.
  • Tong, H.-J., Reid, J. P., Bones, D. L., Luo, B. P., and Krieger, U. K. (2011). Measurements of the Timescales for the Mass Transfer of Water in Glassy Aerosol at low Relative Humidity and Ambient Temperature. Atmos. Chem. Phys., 11:4739–4754.
  • Virtanen, A., Joutsensaari, J., Koop, T., Kannosto, J., Yli-Pirilä, P., Mäkelä, J. M., Holopainen, J. K., Pöschl, U., Kulmala, M., Worsnop, D. R., and Laaksonen, A. (2010). An Amorphous Solid State of Biogenic Secondary Organic Aerosol Particles. Nature, 467:824–827.
  • Volkamer, R., Jimenez, J. L., San Martini, F., Dzepina, K., Zhang, Q., Salcedo, D., Molina, L. T., Worsnop, D. R., and Molina, M. J. (2006). Secondary Organic Aerosol Formation from Anthropogenic Air Pollution: Rapid and Higher than Expected. Geophys. Res. Lett., 33:L17811.
  • Wang, B., Lambe, A. T., Massoli, P., Onasch, T. B., Davidovits, P., Worsnop, D. R., and Knopf, D. A. (2012). The Deposition Ice Nucleation and Immersion Freezing Potential of Amorphous Secondary Organic Aerosol: Pathways for Ice and Mixed-Phase Cloud Formation. J. Geophys. Res. Atmos., 117:1–12.
  • Wang, Z., King, S. M., Freney, E., Rosenoern, T., Smith, M. L., Chen, Q., Kuwata, M., Lewis, E. R., Pöschl, U., Wang, W., Buseck, P. R., and Martin, S. T. (2010). The Dynamic Shape Factor of Sodium Chloride Nanoparticles as Regulated by Drying Rate. Aerosol Sci. Technol., 44:939–953.
  • Woods, E., Kim, H. S., Wivagg, C. N., Dotson, S. J., Broekhuizen, K. E., and Frohardt, E. F. (2007). Phase Transitions and Surface Morphology of Surfactant-Coated Aerosol Particles. J. Phys. Chem. A., 111:11013–11020.
  • Zebel, G. (1958). Zur Theorie des Verhaltens Elektrisch Geladener Aerosole. Kolloid-Zeitschrift., 157:37–50.
  • Zelenyuk, A., Cai, Y., and Imre, D. (2006). From Agglomerates of Spheres to Irregularly Shaped Particles: Determination of Dynamic Shape Factors from Measurements of Mobility and Vacuum Aerodynamic Diameters. Aerosol Sci. Technol., 40:197–217.
  • Zhang, K., Yang, J., Yu, X., Zhang, J., and Wei, X. (2011). Densities and Viscosities for Binary Mixtures of Poly(ethylene Glycol) 400 + Dimethyl Sulfoxide and Poly(ethylene Glycol) 600 + Water at Different Temperatures. J. Chem. Eng. Data, 56:3083–3088.
  • Zhang, S., Akutsu, Y., Russell, L. M., Flagan, R. C., and Seinfeld, J. R. (1995). Radial Differential Mobility Analyzer. Aerosol Sci. Technol., 23:357–372.
  • Zhang, Y., Sanchez, M. S., Douet, C., Wang, Y., Bateman, A. P., Gong, Z., Kuwata, M., Renbaum-Wolff, L., Sato, B. B., Liu, P. F., Bertram, A. K., Geiger, F. M., and Martin, S. T. (2015). Changing Shapes and Implied Viscosities of Suspended Submicron Particles. Atmos. Chem. Phys., 15:7819–7829.
  • Zobrist, B., Soonsin, V., Luo, B. P., Krieger, U. K., Marcolli, C., Peter, T., and Koop, T. (2011). Ultra-Slow Water Diffusion in Aqueous Sucrose Glasses. Phys. Chem. Chem. Phys., 13:3514–3526.
  • Zobrist, B., Marcolli, C., Pedernera, D. A., and Koop, T. (2008). Do Atmospheric Aerosols form Glasses? Atmos. Chem. Phys., 8:5221–5244.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.