1,387
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Optical properties of non-absorbing mineral dust components and mixtures

, , &
Pages 1239-1252 | Received 26 Apr 2016, Accepted 04 Aug 2016, Published online: 13 Sep 2016

References

  • Alexander, J. M., Laskina, O., Meland, B., Young, M. A., Grassian, V. H., and Kleiber, P. D. (2013). A Combined Laboratory and Modeling Study of the Infrared Extinction and Visible Light Scattering Properties of Mineral Dust Aerosol. J. Geophys. Res.: Atmos., 118:435–452.
  • Attwood, A. R., and Greenslade, M. E. (2011). Optical Properties and Associated Hygroscopicity of Clay Aerosols. Aerosol Sci. Technol., 45:1350–1359.
  • Baron, P. A., Sorensen, C. M., and Brockmann, J.E. (2001). Nonspherical Particle Measurements: Shape Factors, Fractals, and Fibers. In Aerosol Measurements: Principles, Techniques, and Applications, 2nd Edition, P. A. Baron and K. Willeke, eds. John Wiley, New York, pp. 705–749.
  • Bohren, C. F., and Huffman, D. R. (2004). Absorption and Scattering of Light by Small Particles. Wiley-VCH, Weinheim, Germany.
  • Broadley, S. L., Murray, B. J., Herbert, R. J., Atkinson, J. D., Dobbie, S., Malkin, T. L., Condliffe, E., and Neve, L. (2012). Immersion Mode Heterogeneous Ice Nucleation by an Illite Rich Powder Representative of Atmospheric Mineral Dust. Atmos. Chem. Phys., 12:287–307.
  • Curtis, D. B., Aycibin, M., Young, M. A., Grassian, V. H., and Kleiber, P. D. (2007). Simultaneous Measurement of Light-Scattering Properties and Particle Size Distribution for Aerosols: Application to Ammonium Sulfate and Quartz Aerosol Particles. Atmos. Environ., 41:4748–4758.
  • Curtis, D. B., Meland, B., Aycibin, M., Arnold, N. P., Grassian, V. H., Young, M. A., and Kleiber, P. D. (2008). A Laboratory Investigation of Light Scattering from Representative Components of Mineral Dust Aerosol at a Wavelength of 550 nm. J. Geophys. Res., 113:D08210.
  • Dahneke, B. (1973). Slip Correction Factors for Nonspherical Bodies—I Introduction and Continuum Flow. J. Aerosol Sci., 4:139–145.
  • Dentener, F., Carmichael, G. R., Zhang, Y., Lelieveld, J., and Crutzen, P. J. (1996). Role of Mineral Aerosol as a Reactive Surface in the Global Troposphere. J. Geophys. Res., 101(D17):22869–22889.
  • Draine, B. T., and Flatau, P. J. (1994). Discrete Dipole Approximation for Scattering Calculations. J. Opt. Soc. Am. A, 11:1491–1499.
  • Draine, B. T., and Flatau, P. J. (2010). User Guide for the Discrete Dipole Approximation Code DDSCAT 7.1. Available at http://arxiv.org/abs/1002.1505.
  • Egan, W. G., and Hilgeman, T. W. (1979). Optical Properties of Inhomogeneous Materials. Academic Press, New York.
  • Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., et al. (2007). Changes in Atmospheric Constituents and in Radiative Forcing, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor, H. Miller, eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Freedman, M. A., Hasenkopf, C. A., Beaver, M. R., and Tolbert, M. A. (2009). Optical Properties of Internally Mixed Aerosols of Dicarboxylic Acids and Ammonium Sulfate. J. Phys. Chem. A, 113:13584–13592.
  • Gallily, I., and Eisner, A. D. (1979). On the Orderly Nature of the Motion of Nonspherical Aerosol Particles. J. Colloid Interf. Sci., 68:320–337.
  • Gasteiger, J., Weigner, M., Grob, S., Freudenthaler, V., Toledano, C., Tesche, M., and Kandler, K. (2011). Modelling Lidar-Relevant Optical Properties of Complex Mineral Dust Aerosols. Tellus, 63B:725–741.
  • Ginoux, P., Chin, M., Tegen, I., Prospero, J.M., Holben, B., Dubovik, O., and Lin, S. (2001). Sources and Distributions of Dust Aerosol Simulated with the GOCART Model. J. Geophys. Res., 106(D17):20255–20273.
  • Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C., and Zhao, M. (2012). Global-scale Attribution of Anthropogenic and Natural Dust Sources and Their Emission Rates Based upon MODIS Deep Blue Aerosol Products. Rev. Geophys., 50:RG3005.
  • Glen, A. and Brooks, S. D. (2013). A New Method for Measuring Optical Scattering Properties of Atmospherically Relevant Dusts using the Cloud and Aerosol Spectrometer with Polarization (CASPOL). Atmos. Chem. Phys., 13:1345–1356.
  • Haapanala, P., Raisanen, P., Kahnert, M., Nousiainen, T. (2012). Sensitivity of the Shortwave Radiative Effect of Dust on Particle Shape: Comparison of Spheres and Spheroids. J. Geophys. Res., 117:D08201.
  • Hajihashemi, M. R., and Jian, H. (2013). Gaussian Random Ellipsoid Geometry-Based Morphometric Recovery of Irregular Particles Using Light Scattering Spectroscopy. J. Quant. Spectrosc. Radiat. Transfer, 118:86–95.
  • Hasenkopf, C., Beaver, M., Trainer, M., Dewitt, H., Freedman, M. A., Toon, O. B., McKay, C., and Tolbert, M. (2010). Optical Properties of Titan and Early Earth Haze Laboratory Analogs in the Mid-Visible, Icarus, 207:903–913.
  • Heintzenberg, J., and Charlson, R. (1999). Design and Applications of the Integrating Nephelometer: A Review. J. Atmos. Ocean Tech., 13:987–1000.
  • Hinds, W. C. (1996). Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. Wiley, New York.
  • Hudson, P. K., Gibson, E. R., Young, M. A., Kleiber, P. D., and Grassian, V. H. (2007). A Newly Designed and Constructed Instrument for Coupled Infrared Extinction and Size Distribution Measurements of Aerosols. Aerosol Sci. Technol., 41:701–710.
  • Hudson, P. K., Gibson, E. R., Young, M. A., Kleiber, P. D., and Grassian, V. H. (2008). Coupled Infrared Extinction and Size Distribution Measurements for Several Clay Components of Mineral Dust Aerosol. J. Geophys. Res., 113:D01201.
  • Inoue, A., and Kitagawa, R. (1994). Morphological Characteristics of Illitic Clay Minerals from a Hydrothermal System. Am. Mineral., 79:700–711.
  • Johnson, B., Christopher, S., Haywood, J., Osborne, S., McFarlane, S., Hsu, C., Salustro, C., and Kahn, R. (2009). Measurements of Aerosol Properties from Aircraft, Satellite and Ground-Based Remote Sensing: A Case-Study from the Dust and Biomass-Burning Experiment (DABEX). Q. J. R. Meteorol. Soc., 135:922–934.
  • Johnson, M., Meskhidze, N., and Kiliyanpilakkil, P. (2012). A Global Comparison of GEOS-Chem-Predicted and Remotely-Sensed Mineral Dust Aerosol Optical Depth and Extinction Profiles. J. Adv. Model. Earth Sys., 4:M07001.
  • Kahnert, F. M. (2004). Reproducing the Optical Properties of Fine Desert Dust Aerosols using Ensembles of Simple Model Particles. J. Quant. Spectrosc. Radiat. Transfer, 85:231–249.
  • Kahnert, M., Nousiainen, T., Thomas, M. A., and Tyynela, J. (2012). Light Scattering by Particles with Small-Scale Surface Roughness: Comparison of Four Classes of Model Geometries, J. Quant. Spectrosc. Radiat. Transfer, 113:2356–2367, doi:10.1016/j.jqsrt.2012.03.017.
  • Kalashnikova, O., Kahn, R., Sokolik, I., and Li, W. (2005). Ability of Multiangle Remote Sensing Observations to Identify and Distinguish Mineral Dust Types: Optical Models and Retrievals of Optically Thick Plumes. J. Geophys. Res., 110:D18S14.
  • Kanji, Z. A., and Abbatt, J. P. D. (2010). Ice Nucleation onto Arizona Test Dust at Cirrus Temperatures: Effect of Temperature and Aerosol Size on Onset Relative Humidity. J. Phys Chem. A, 935–941.
  • Kishore, N., and Gu, S. (2010). Wall Effects on Flow and Drag Phenomena of Spheroid Particles at Moderate Reynolds Numbers. Ind. Eng. Chem. Res., 49:9486–9495.
  • Koepke, P., Gasteiger, J., and Hess, M. (2015). Technical Note: Optical Properties of Desert Aerosol with Non-Spherical Mineral Particles: Data Incorporated to OPAC. Atmos. Chem. Phys., 15:5947–5956.
  • Kok, J. F. (2011). A Scaling Theory for the Size Distribution of Emitted Dust Aerosols Suggests Climate Models Underestimate the Size of the Global Dust Cycle. Proc. Natl. Acad. Sci., 108(3):1016–1021.
  • Lang-Yona, M., Rudich, Y., Segre, E., Dinar, E., and Abo-Riziq, A. (2009). Complex Refractive Indices of Aerosols Retrieved by Continuous Wave-Cavity Ring Down Aerosol Spectrometer. Anal. Chem., 81:1762–1769.
  • Li, L., Chen, L., Chen, H., Yang, X., Tang, Y., and Zhang, R. (2011). Monitoring Optical Properties of Aerosols with Cavity Ring-Down Spectroscopy. J. Aerosol Sci., 42:277–284.
  • Liu, T. (1985). Loess in China. China Ocean Press, Beijing.
  • Lüönd, F., Stetzer, O., Welti, A., and Lohmann, U. (2010). Experimental Study on the Ice Nucleation Ability of Size-Selected Kaolinite Particles in the Immersion Mode. J. Geophys. Res., 115:D14201.
  • Marcolli, C., Gedamke, S., Peter, T., and Zobrist, B. (2007). Efficiency of Immersion Mode Ice Nucleation on Surrogates of Mineral Dust. Atmos. Chem. Phys., 7:5081–5091.
  • Maring, H., Savoie, D. L., Izaguirre, M. A., Custals, L., and Reid, J. S. (2003). Mineral Dust Aerosol Size Distribution Change During Atmospheric Transport. J. Geophys. Res., 108(D19):8592.
  • Martin, R. T., Bailey, S. W., Eberl, D. D., Fanning, D. S., Guggenheim, S., Kodama, H., Pevear, D. R., Środoń, J., and Wicks, F. J. (1991). Report of the Clay Minerals Society Nomenclature Committee: Revised Classification of Clay Materials. Clay. Clay Miner., 39(3):333–335.
  • McNaughton, S., Clarke, A., Kapustin, V., Shinozuka, Y., Howell, S., Anderson, B., Winstead, E., Dibb, F., Scheuer, E., Cohen, R., Wooldridge, P., Perring, A., Huey, G., Kim, S., Jimenez, S., Dunlea, E., DeCarlo, E., Wennberg, P., Crounse, J., Weinheimer, R., and Flocke, F. (2009). Observations of Heterogeneous Reactions Between Asian Pollution and Mineral Dust over Eastern North Pacific during INTEX-B. Chem. Phys., 2:8469–8539.
  • Meland, B., Alexander, J. M., Wong, C. S., Grassian, V. H., Young, M. A., and Kleiber, P. D. (2012). Evidence for Particle Size-Shape Correlations in the Optical Properties of Silicate Clay Aerosol. J. Quant. Spectrosc. Ra., 113:549–558.
  • Mellon, D., King, S. J., Kim, J., Reid, J. P., Orr-Ewing, A. J. J. (2011). Measurements of Extinction by Aerosol Particles in the Near-Infrared Using Continuous Wave Cavity Ring-Down Spectroscopy. Phys. Chem. A, 115:774–783.
  • Merikallio, S., Lindqvist, H., Nousiainen, T., and Kahnert, M. (2011). Modelling Light Scattering by Mineral Dust using Spheroids: Assessment of Applicability. Atmos. Chem. Phys., 11:5347–5363.
  • Mogili, P., Yang, K., Young, M., Kleiber, P., and Grassian, V. H. (2007). Environmental Aerosol Chamber Studies of Extinction Spectra of Mineral Dust Aerosol Components: Broadband IR-UV Extinction Spectra. J. Geophys. Res., 112:D21204.
  • Mogili, P., Yang, K., Young, M., Kleiber, P., and Grassian, V. H. (2008). Extinction Spectra of Mineral Dust Aerosol Components in an Environmental Aerosol Chamber: IR Resonance Studies. Atmos. Environ., 42:1752–1761.
  • Mätzler, C. (2002). IAP Research Report No. 2002–08 [Online], Universität Bern, Bern, Switzerland. Available at http://diogenes.iwt.unibremen.de/vt/laser/wriedt/Mie_Type_Codes/body_mie_type_codes.html, accessed May 2008.
  • Nadeau, P. H. (1985). The Physical Dimensions of Fundamental Clay Particles. Clay Miner., 20:499–514.
  • Ndour, M., D'Anna, B., George, C., Ka, O., Balkanski, Y., Kleffman, J., Stemmler, K., and Ammann, M. (2008). Photoenhanced Uptake of NO2 on Mineral Dust: Laboratory Experiments and Model Simulations. Geo. Phys. Res. Lett., 35:L05812.
  • Nousiainen, T., Kahnert, M., and Veihelmann, B. (2006). Light Scattering Modeling of Small Feldspar Aerosol Particles using Polyhedral Prisms and Spheroids. J. Quant. Spectrosc. Radiat. Transfer, 101:471–487, doi:10.1016/j.jqsrt.2006.02.038.
  • Pettersson, A., Lovejoy, E. R., Brock, C., Brown, S. S., and Ravishankara, A. R. (2004). Measurement of Aerosol Optical Extinction at 532 nm with Pulsed Cavity Ring Down Spectroscopy. J. Aerosol Sci., 35:995–1011.
  • Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S., and Gill, T. (2002). Environmental Characterization of Global Sources of Atmospheric Soil Dust Identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) Absorbing Aerosol Product. Rev. Geophys., 40:1002.
  • Riziq, A. A., Erlick, C., Dinar, E., and Rudich, Y. (2007). Optical Properties of Absorbing and Non-Absorbing Aerosols Retrieved by Cavity Ring Down (CRD) Spectroscopy. Atmos. Chem. Phys., 7(6):1523–1536, doi:10.5194/acp-7-1523-2007.
  • Segré, G. and Silberberg, A. (1961). Radial Particle Displacements in Poiseuille Flow of Suspensions. Nature, 189:209–210.
  • Siegesmund, S., Weiss, T., and Vollbrecht, A. (2002). Natural Stone, Weathering Phenomena, Conservation Strategies and Case Studies, Geological Society, London, Special Publications, 205:137–147.
  • Sokolik, I. N., and Toon, O. B. (1999). Incorporation of Mineralogical Composition into Models of the Radiative Properties of Mineral Aerosol from UV to IR Wavelengths. J. Geophys. Res., 104(D8):9423–9444, doi:10.1029/1998JD200048
  • Sullivan, R. C. M., Moore, J., Petters, M. D., Kreidenweis, S. M., Roberts, G. C., and Prather, K. A. (2009). Effect of Chemical Mixing State on the Hygroscopicity and Cloud Nucleation Properties of Calcium Mineral Dust Particles. Atmos. Chem. Phys., 9:3303–3316.
  • Veghte, D. P., and Freedman, M. A. (2012). The Necessity of Microscopy to Characterize the Optical Properties of Size-selected, Nonspherical Aerosol Particles. Anal. Chem., 84:9101–9108.
  • Veghte, D. P., and Freedman, M. A. (2014). Facile Method for Determining the Aspect Ratios of Mineral Dust Aerosol by Electron Microscopy. Aerosol Sci. Technol., 48(7):715–724.
  • Veghte, D. P., Moore, J. E., Jensen, L, and Freedman, M. A. (2015). Influence of Shape on the Optical Properties of Hematite Aerosol. J. Geophys. Res. Atmos., 120:7025–7039.
  • Volten, H., Munoz, O., Rol, E., De Haan, J. F., Vassen, W., Hovenier, J. W., Muinonen, K., and Nousiainen, T. (2001). Scatttering Matrices of Mineral Aerosol Particles at 441.6 nm and 632.8 nm. J. Geophys. Res., 106(D15):17375–17401.
  • Walker, J. S., Carruthers, A. E., Orr-Ewing, A. J., and Reid, J. P. (2013). Measurements of Light Extinction by Single Aerosol Particles. J. Phys. Chem. Lett., 4:1748–1752.
  • Welti, A., Lüönd, F., Stetzer, O., and Lohman, U. (2009). Influence of Particle Size on the Nucleating Ability of Mineral Dust. Atmos. Chem. Phys., 9:6705–6715.
  • Yang, W., Marshak, A., Kostinski, A. B., and Varnai, T. (2013). Shape-Induced Gravitational Sorting of Saharan Dust During Transatlantic Voyage: Evidence from CALIOP Lidar Depolarization Measurements. Geophys. Res. Lett., 40:3281–3286.
  • Zhao, T., Gong, S., Zhang, X., and McKendry, I. (2003). Modeled Size-Segregated Wet and Dry Deposition Budges of Soil Dust Aerosol during ACE-Asia 2001: Implications for Trans-Pacific Transport. Geophys. Res., 10:D23, doi: 10.1029/2002JD003363.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.