2,565
Views
35
CrossRef citations to date
0
Altmetric
Original Articles

Optical properties of black carbon in cookstove emissions coated with secondary organic aerosols: Measurements and modeling

, , , , , , , , & show all
Pages 1264-1276 | Received 01 May 2016, Accepted 07 Aug 2016, Published online: 12 Sep 2016

References

  • Adachi, K., Chung, S. H., and Buseck, P. R. (2010). Shapes of Soot Aerosol Particles and Implications for their Effects on Climate. J. Geophys. Res.: Atmos., 115:1–9.
  • Adkins, E., Tyler, E., Wang, J., Siriri, D., and Modi, V. (2010). Field Testing and Survey Evaluation of Household Biomass Cookstoves in Rural Sub-Saharan Africa. Energy Sust. Dev., 14(3):172–185.
  • Adler, G., Riziq, A. A., Erlick, C., and Rudich, Y. (2009). Effect of Intrinsic Organic Carbon on the Optical Properties of Fresh Diesel Soot. Proc. Natl. Acad. Sci., 107(15):6699–6704. Available at: http://www.pnas.org/cgi/doi/10.1073/pnas.0903311106.
  • Andreae, M. O., and Gelencsér, A. (2006). Black Carbon or Brown Carbon? The Nature of Light-absorbing Carbonaceous Aerosols. Atmos. Chem. Phys. Discuss., 6(3):3419–3463.
  • Arnott, W. P., Moosmüller, H., Rogers, C. F., Jin, T., and Bruch, R. (1999). Photoacoustic Spectrometer for Measuring Light Absorption by Aerosol: Instrument Description. Atmos. Environ., 33:2845–2852.
  • Arnott, W. P., Moosmüller, H., and Walker, J. W. (2000). Nitrogen Dioxide and Kerosene-Flame Soot Calibration of Photoacoustic Instruments for Measurement of Light Absorption by Aerosols. Rev. Sci. Instrum., 71(12):4545–4552. Available at: http://link.aip.org/link/RSINAK/v71/i12/p4545/s1&Agg=doi.
  • Bohren, C. F., and Huffman, D. R. (1983). Absorption and Scattering of Light by Small Particles. John Wiley & Sons, New York, NY.
  • Bond, T. C., and Bergstrom, R. W. (2006). Light Absorption by Carbonaceous Particles: An Investigative Review. Aerosol Sci. Technol., 40(1):27–67. Available at: http://www.tandfonline.com/doi/abs/10.1080/02786820500421521.
  • Bond, T. C., Habib, G., and Bergstrom, R. W. (2006). Limitations in the Enhancement of Visible Light Absorption Due to Mixing State. J. Geophys. Res., 111(D20):D20211. Available at: http://doi.wiley.com/10.1029/2006JD007315.
  • Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., and Kinne, S. (2013). Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment. J. Geophys. Res.: Atmos., 118(11):5380–5552. Available at: http://doi.wiley.com/10.1002/jgrd.50171.
  • Cappa, C. D., Onasch, T. B., Massoli, P., Worsnop, D. R., Bates, T. S., Cross, E. S., Davidovits, P., Hakala, J., Hayden, K. L., Jobson, B. T., and Kolesar, K. R. (2012). Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon. Science (New York, N.Y.), 337(6098):1078–81. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22936774.
  • Chakrabarty, R. K., Gyawali, M., Yatavelli, R. L., Pandey, A., Watts, A. C., Knue, J., Chen, L. W. A., Pattison, R. R., Tsibart, A., Samburova, V., and Moosmüller, H. (2016). Brown Carbon Aerosols from Burning of Boreal Peatlands: Microphysical Properties, Emission Factors, and Implications for Direct Radiative Forcing. Atmos. Chem. Phys., 16(5):3033–3040. Available at: http://www.atmos-chem-phys.net/16/3033/2016/.
  • Chakrabarty, R. K., Moosmüller, H., Arnott, W. P., Garro, M. A., Slowik, J. G., Cross, E. S., Han, J. H., Davidovits, P., Onasch, T. B., and Worsnop, D. R. (2007). Light Scattering and Absorption by Fractal-like Carbonaceous Chain Aggregates: Comparison of Theories and Experiment. Appl. Optics, 46:6990–7006.
  • Chen, Y., and Bond, T. C. (2010). Light Absorption by Organic Carbon from Wood Combustion. Atmos. Chem. Phys., 9:1773–1787. Available at: http://www.atmos-chem-phys-discuss.net/9/20471/2009/.
  • Chen, Y., Roden, C. A., and Bond, T. C. (2012). Characterizing Biofuel Combustion with Patterns of Real-Time Emission Data (PaRTED). Environ. Sci. Technol., 46(11):6110–6117.
  • China, S., Mazzoleni, C., Gorkowski, K., Aiken, A. C., and Dubey, M. K. (2013). Morphology and Mixing State of Individual Freshly Emitted Wildfire Carbonaceous Particles. Nature Commun., 4:2122. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3715871&tool=pmcentrez&rendertype=abstract.
  • Chylek, P., and Wong, J. (1995). Effect of Absorbing Aerosols on Global Radiation Budget. Geophys. Res. Lett., 22:929–931. Available at: http://doi.wiley.com/10.1029/95GL00800.
  • Cross, E. S., Onasch, T. B., Ahern, A., Wrobel, W., Slowik, J. G., Olfert, J., Lack, D. A., Massoli, P., Cappa, C. D., Schwarz, J. P., and Spackman, J. R. (2010). Soot Particle Studies—Instrument Inter-Comparison—Project Overview. Aerosol Sci. Technol., 44:592–611.
  • DeCarlo, P., and Slowik, J. (2004). Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 1: Theory. Aerosol Sci., 38(12):1185–1205. Available at: http://www.tandfonline.com/doi/abs/10.1080/027868290903907 and http://www.tandfonline.com/doi/pdf/10.1080/027868290903907.
  • Farias, T. L., Köylü, Ü. Ö., and Carvalho, M. G. (1996). Range of Validity of the Rayleigh—Debye—Gans Theory for Optics of Fractal Aggregates. Appl. Opt., 35:6560–6567.
  • Feng, Y., Ramanathan, V., and Kotamarthi, V. R. (2013). Brown Carbon: A Significant Atmospheric Absorber of Solar Radiation? Atmos. Chem. Phys., 13(17):8607–8621. Available at: http://www.atmos-chem-phys.net/13/8607/2013/.
  • Fuller, K. A. (1995). Scattering and Absorption Cross Sections of Compounded Spheres. III. Spheres Containing Arbitrarily Located Spherical Inhomogeneities. J. Opt. Soc. Am. A, 12(5):893–904.
  • Fuller, K. A., Malm, W. C., and Kreidenweis, S. M. (1999). Effects of Mixing on Extinction by Carbonaceous Particles. J. Geophys. Res.: Atmos., 104(D13):15941–15954. Available at: http://dx.doi.org/10.1029/1998JD100069.
  • Gysel, M., Laborde, M., Olfert, J. S., Subramanian, R., and Gröhn, A. J. (2011). Effective Density of Aquadag and Fullerene soot Black Carbon Reference Materials used for SP2 Calibration. Atmos. Meas. Tech., 4(12):2851–2858. Available at: http://www.atmos-meas-tech.net/4/2851/2011/.
  • Hassan, T., Moosmüller, H., and Chung, C. E. (2015). Coefficients of an Analytical Aerosol Forcing Equation Determined with a Monte-Carlo Radiation Model. J. Quant. Spectrosc. Radiat. Transf., 164:129–136.
  • Holder, A. L., Hagler, G. S., Yelverton, T. L., and Hays, M. D. (2014). On-Road Black Carbon Instrument Intercomparison and Aerosol Characteristics by Driving Environment. Atmos. Environ., 88:183–191. Available at: http://dx.doi.org/10.1016/j.atmosenv.2014.01.021.
  • Jacobson, M. Z. (2000). A Physically-Based Treatment of Elemental Carbon Optics: Implications for Global Direct Forcing of Aerosols. Geophys. Res. Lett., 27:217–220. Available at: http://dx.doi.org/10.1029/1999GL010968.
  • Jacobson, M. Z. (2001). Strong Radiative Heating Due to the Mixing State of Black Carbon in Atmospheric Aerosols. Nature, 409:695–697.
  • Jacobson, M. Z. (2010). Short-Term Effects of Controlling Fossil-Fuel Soot, Biofuel Soot and Gases, and Methane on Climate, Arctic Ice, and Air Pollution Health. J. Geophys. Res., 115(D14):D14209. Available at: http://doi.wiley.com/10.1029/2009JD013795.
  • Jetter, J., Zhao, Y., Smith, K. R., Khan, B., Yelverton, T., DeCarlo, P., and Hays, M. D. (2012). Pollutant Emissions and Energy Efficiency Under Controlled Conditions for Household Biomass Cookstoves and Implications for Metrics Useful in Setting International Test Standards. Environ. Sci. Technol., 46(19):10827–10834. doi:10.1021/es301693f
  • Just, B., Rogak, S., and Kandlikar, M. (2013). Characterization of Ultrafine Particulate Matter from Traditional and Improved Biomass Cookstoves. Environ. Sci. Technol., 47(7):3506–3512.
  • Kodros, J. K., Scott, C. E., Farina, S. C., Lee, Y. H., L'Orange, C., Volckens, J., and Pierce, J. R. (2015). Uncertainties in Global Aerosols and Climate Effects due to Biofuel Emissions. Atmos. Chem. Phys., 15(15):8577–8596.
  • Lack, D. A., and Cappa, C. D. (2010). Impact of Brown and Clear Carbon on Light Absorption Enhancement, Single Scatter Albedo and Absorption Wavelength Dependence of Black Carbon. Atmos. Chem. Phys., 10(9):4207–4220.
  • Lack, D. A., Lovejoy, E. R., Baynard, T., Pettersson, A., and Ravishankara, A. R. (2006). Aerosol Absorption Measurement using Photoacoustic Spectroscopy: Sensitivity, Calibration, and Uncertainty Developments. Aerosol Sci. Technol., 40(9):697–708. Available at: http://www.tandfonline.com/doi/abs/10.1080/02786820600803917.
  • Lack, D. A., Cappa, C. D., Cross, E. S., Massoli, P., Ahern, A. T., Davidovits, P., and Onasch, T. B. (2009). Absorption Enhancement of Coated Absorbing Aerosols: Validation of the Photo-Acoustic Technique for Measuring the Enhancement. Aerosol Sci. Technol., 43(10):1006–1012. Available at: http://www.tandfonline.com/doi/abs/10.1080/02786820903117932.
  • Li, X., Wang, S., Duan, L., Hao, J., and Nie, Y. (2009). Carbonaceous Aerosol Emissions From Household Biofuel Combustion in China. Environ. Sci. Technol., 43(15):6076–6081.
  • Liu, S., Aiken, A. C., Gorkowski, K., Dubey, M. K., Cappa, C. D., Williams, L. R., Herndon, S. C., Massoli, P., Fortner, E. C., Chhabra, P. S., and Brooks, W. A. (2015). Enhanced Light Absorption by Mixed Source Black and Brown Carbon Particles in UK Winter. Nature Commun., 6:8435. doi: 10.1038/ncomms9435
  • L'Orange, C., DeFoort, M., and Willson, B. (2012). Influence of Testing Parameters on Biomass Stove Performance and Development of an Improved Testing Protocol. Energy Sustain. Dev., 16(1):3–12.
  • MacCarty, N., Ogle, D., Still, D., Bond, T., and Roden, C. (2008). A Laboratory Comparison of the Global Warming Impact of five Major Types of Biomass Cooking Stoves. Energy Sustain. Dev., 12(2):56–65.
  • Moffet, R. C., and Prather, K. A. (2009). In-situ Measurements of the Mixing State and Optical Properties of Soot with Implications for Radiative Forcing Estimates. Proc. Natl Acad. Sci. USA, 106:11872–11877.
  • Moosmüller, H., and Arnott, W. P. (2009). Particle Optics in the Rayleigh Regime. J. Air Waste Manage. Assoc., 59(9):1028–1031. Available at: http://www.tandfonline.com/doi/abs/10.3155/1047-3289.59.9.1028.
  • Moteki, N., and Kondo, Y. (2010). Dependence of Laser-Induced Incandescence on Physical Properties of Black Carbon Aerosols: Measurements and Theoretical Interpretation. Aerosol Sci. Technol., 44(8):663–675.
  • Moteki, N., Kondo, Y., Miyazaki, Y., Takegawa, N., Komazaki, Y., Kurata, G., Shirai, T., Blake, D. R., Miyakawa, T., and Koike, M. (2007). Evolution of Mixing State of Black Carbon Particles: Aircraft Measurements Over the Western Pacific in March 2004. Geophys. Res. Lett., 34.
  • Olfert, J. S., and Collings, N. (2005). New Method for Particle Mass Classification—the Couette Centrifugal Particle Mass Analyzer. J. Aerosol Sci., 36:1338–1352.
  • Preble, C. V., Hadley, O. L., Gadgil, A. J., and Kirchstetter, T. W. (2014). Emissions and Climate-Relevant Optical Properties of Pollutants Emitted from a Three-stone Fire and the Berkeley-Darfur Stove Tested under Laboratory Conditions. Environ. Sci. Technol., 48(11):6484–6491.
  • Presto, A. A., and Donahue, N. M. (2006). Investigation of Alpha-Pinene + Ozone Secondary Organic Aerosol Formation at Low total Aerosol Mass. Environ. Sci. Technol., 40:3536–3543.
  • Presto, A. A., Huff Hartz, K. E., and Donahue, N. M. (2005). Secondary Organic Aerosol Production from Terpene Ozonolysis. 2. Effect of NOx Concentration. Environ. Sci. Technol., 39:7046–7054.
  • Ramanathan, V., and Carmichael, G. (2008). Global and Regional Climate Changes Due to Black Carbon. Nature Geosci., 1(4):221–227.
  • Reid, J. S., and Hobbs, P. V. (1998). Physical and Optical Properties of Young Smoke from Individual Biomass Fires in Brazil. J. Geophys. Res., 103:32013.
  • Riemer, N., Vogel, H., and Vogel, B. (2004). Soot Aging Time Scales in Polluted Regions During Day and Night. Atmos. Chem. Phys., 4:1885–1893.
  • Roden, C. A., Bond, T. C., Conway, S., Pinel, A. B. O., MacCarty, N., and Still, D. (2009). Laboratory and Field Investigations of Particulate and Carbon monoxide Emissions from Traditional and Improved Cookstoves. Atmos. Environ., 43(6):1170–1181.
  • Roehl, C. M., Orlando, J. J., Tyndall, G. S., Shetter, R. E., Vazquez, G. J., Cantrell, C. A., and Calvert, J. G. (1994). Temperature Dependence of the Quantum Yields for the Photolysis of NO2 Near the Dissociation Limit. J. Phys. Chem., 98(32):7837–7843. Available at: http://pubs.acs.org/doi/abs/10.1021/j100083a015/nhttp://pubs.acs.org/doi/pdf/10.1021/j100083a015.
  • Saleh, R., Marks, M., Heo, J., Adams, P. J., and Donahue, N. M. A. L. R. (2015). Contribution of Brown Carbon and Lensing to the Direct Radiative Effect of Carbonaceous Aerosols from Biomass and Biofuel Burning Emissions. J. Geophys. Res. Atmos., 120:10285–10296. doi:10.1002/2015JD023697
  • Saleh, R., Robinson, E. S., Tkacik, D. S., Ahern, A. T., Liu, S., Aiken, A. C., Sullivan, R. C., Presto, A. A., Dubey, M. K., Yokelson, R. J., Donahue, N. M., and Robinson, A. L. (2014). Brownness of Organics in Aerosols from Biomass Burning Linked to Their Black Carbon Content. Nature Geosci., 7:1–4. Available at: http://www.nature.com/doifinder/10.1038/ngeo2220.
  • Scarnato, B. V., Vahidinia, S., Richard, D. T., and Kirchstetter, T. W. (2013). Effects of Internal Mixing and Aggregate Morphology on Optical Properties of Black Carbon Using a Discrete Dipole Approximation Model. Atmos. Chem. Phys., 13(10):5089–5101.
  • Schnaiter, M. (2005). Absorption Amplification of Black Carbon Internally Mixed With Secondary Organic Aerosol. J. Geophys. Res., 110(D19):D19204. Available at: http://doi.wiley.com/10.1029/2005JD006046.
  • Schnitzler, E. G., Dutt, A., Charbonneau, A. M., Olfert, J. S., and Jäger, W. (2014). Soot Aggregate Restructuring Due to Coatings of Secondary Organic Aerosol Derived from Aromatic Precursors. Environ. Sci. Technol., 48(24):14309–14316.
  • Schwarz, J. P., Gao, R. S., Fahey, D. W., Thomson, D. S., Watts, L. A., Wilson, J. C., Reeves, J. M., Darbeheshti, M., Baumgardner, D. G., Kok, G. L., and Chung, S. H. (2006). Single-Particle Measurements of Midlatitude Black Carbon and Light-Scattering Aerosols from the Boundary Layer to the Lower Stratosphere. J. Geophys. Res., 111(D16):D16207. Available at: http://doi.wiley.com/10.1029/2006JD007076.
  • Schwarz, J. P., Gao, R. S., Spackman, J. R., Watts, L. A., Thomson, D. S., Fahey, D. W., Ryerson, T. B., Peischl, J., Holloway, J. S., Trainer, M., and Frost, G. J. (2008). Measurement of the Mixing State, Mass, and Optical Size of Individual Black Carbon Particles in Urban and Biomass Burning Emissions. Geophys. Res. Lett., 35(13):1–5.
  • Sedlacek, A. J., Lewis, E. R., Kleinman, L., Xu, J., and Zhang, Q. (2012). Determination of and Evidence for Non-core-shell Structure of Particles Containing Black Carbon Using the Single-Particle Soot Photometer (SP2). Geophys. Res. Lett., 39.
  • Sharma, N., Arnold, I. J., Moosmüller, H., Arnott, W. P., and Mazzoleni, C. (2013). Photoacoustic and Nephelometric Spectroscopy of Aerosol Optical Properties with a Supercontinuum Light Source. Atmos. Meas. Tech., 6(12):3501–3513.
  • Shiraiwa, M., Kondo, Y., Iwamoto, T., and Kita, K. (2010). Amplification of Light Absorption of Black Carbon by Organic Coating. Aerosol Sci. Technol., 44(1):46–54. Available at: http://www.tandfonline.com/doi/abs/10.1080/02786820903357686.
  • Sorensen, C. M. (2001). Light Scattering by Fractal Aggregates: A Review. Aerosol Sci. Technol., 35:648–687.
  • Subramanian, R., Kok, G. L., Baumgardner, D., Clarke, A., Shinozuka, Y., Campos, T. L., Heizer, C. G., Stephens, B. B., De Foy, B., Voss, P. B., and Zaveri, R. A. (2010). Black Carbon Over Mexico: the Effect of Atmospheric Transport on Mixing State, Mass Absorption Cross-section, and BC/CO Ratios. Atmos. Chem. Phys. Discuss., 9:219–237.
  • Wang, Q., Huang, R. J., Cao, J., Han, Y., Wang, G., Li, G., Wang, Y., Dai, W., Zhang, R., and Zhou, Y. (2014). Mixing State of Black Carbon Aerosol in a Heavily Polluted Urban Area of China: Implications for Light Absorption Enhancement. Aerosol Sci. Technol., 48(7):689–697. Available at: http://www.tandfonline.com/doi/abs/10.1080/02786826.2014.917758.
  • Wang, X., Heald, C. L., Ridley, D. A., Schwarz, J. P., Spackman, J. R., Perring, A. E., Coe, H., Liu, D., and Clarke, A. D. (2014). Exploiting Simultaneous Observational Constraints on Mass and Absorption to Estimate the Global Direct Radiative Forcing of Black Carbon and Brown Carbon. Atmos. Chem. Phys., 14:10989–11010. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-84908464735&partnerID=tZOtx3y1.
  • Wilson, D. L., Talancon, D. R., Winslow, R. L., Linares, X., and Gadgil, A. J. (2016). Avoided Emissions of a Fuel-efficient Biomass Cookstove Dwarf Embodied Emissions. Dev. Eng., 1:45–52. Available at: http://dx.doi.org/10.1016/j.deveng.2016.01.001.
  • Zhang, R., Khalizov, A. F., Pagels, J., Zhang, D., Xue, H., and McMurry, P. H. (2008). Variability in Morphology, Hygroscopicity, and Optical Properties of Soot Aerosols During Atmospheric Processing. Proc. Natl. Acad. Sci. USA, 105:10291–10296. Available at: http://www.pnas.org/content/105/30/10291.full.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.