1,066
Views
17
CrossRef citations to date
0
Altmetric
Articles

Impact of necking and overlapping on radiative properties of coated soot aggregates

, &
Pages 532-542 | Received 29 Apr 2016, Accepted 16 Dec 2016, Published online: 06 Jan 2017

References

  • Adachi, K., Chung, S. H., and Buseck, P. R. (2010). Shapes of Soot Aerosols Particles and Implications for Their Effects on Climate. J. Geophys. Res., 115:D15206.
  • Adachi, K., Chung, S. H., Friedrich, H., and Buseck, P. R. (2007). Fractal Parameters of Individual Soot Particles Determined Using Electron Tomography: Implications for Optical Properties. J. Geophys. Res., 112:D14202.
  • Al Zaitone, B., Schmid, H.-J., and Peukert, W. (2009). Simulation of Structure and Mobility of Aggregates Formed by Simultaneous Coagulation, Sintering and Surface Growth. J. Aerosol Sci., 40:950–964.
  • Ayrancı, I., Vaillon, R., Selçuk, N. (2007). Performance of Discrete Dipole Approximation for Prediction of Amplitude and Phase of Electromagnetic Scattering by Particles. J. Quant. Spectrosc. Radiat. Transf., 103:83–101.
  • Bambha, R. P., Dansson, M. A., Schrader, P. E., and Michelsen, H. A. (2013). Effects of Volatile Coatings and Coating Removal Mechanisms on the Morphology of Graphitic Soot. Carbon, 61:80–96.
  • Bescond, A., Yon, J., Girasole, T., Jouen, C., Rozé, C., and Coppalle, A. (2013). Numerical Investigation of the Possibility to Determine the Primary Particle Size of Fractal Aggregates by Measuring Light Depolarization. J. Quant. Spectrosc. Radiat. Transf., 126:130–139.
  • Bescond, A., Yon, J., Ouf, F.-X., Ferry, D., Delhaye, D., Gaffié, D., Coppalle, A., and Rozé, C. (2014). Automated Determination of Aggregate Primary Particle Size Distribution by TEM Image Analysis: Application to Soot. Aerosol Sci. Technol., 48:831–841.
  • Bond, T. C., and Bergstrom, R. W. (2006). Light Absorption by Carbonaceous Particles: an Investigative Review. Aerosol Sci. Technol., 40:27–67.
  • Brasil, A. M., Farias, T. L., and Carvalho, M. G. (1999). A Recipe for Image Characterization of Fractal-Like Aggregates. J. Aerosol Sci., 30:1379–1389.
  • Bueno, P., Havey, D., Mulholland, G. W., Hodges, J. T., Gillis, K., Dickerson, R. R., and Zachariah, M. R. (2011). Photoacoustic Measurements of Amplification of the Absorption Cross Section for Coated Soot Aerosols. Aerosol Sci. Technol., 45:1217–1230.
  • Cheng, T., Wu, Y., and Chen, H. (2014). Effects of Morphology on the Radiative Properties of Internally Mixed Light Absorbing Carbon Aerosols With Different Aging Status. Opt. Exp., 22:15904–15917.
  • Dobbins, R., and Megaridis, C. (1992). Absorption and Scattering of Light by Polydisperse Aggregates. Appl. Opt., 30:4747–4754.
  • Dong, J., Zhao, J. M., and Liu, L. H. (2015). Morphological Effects on the Radiative Properties of Soot Aerosols in Different Internally Mixing States With Sulfate. J. Quant. Spectrosc. Radiat. Transf., 165:43–55.
  • Draine, B. T., and Flatau, P. J. (1994). Discrete-Dipole Approximation for Scattering Calculations. J. Opt. Soc. Am., 11:1491–1499.
  • Draine, B. T., and Flatau, P. J. (2014). User Guide to the Discrete Dipole Approximation Code DDSCAT 7.3. Available at http://arxiv.org/abs/1002.1505
  • Draine, B. T., and Goodman, J. (1993). Beyond Clausius–Mossotti-Wave Propagation on a Polarizable Point Lattice and the Discrete Dipole Approximation. Astrophys. J., 405:685–697.
  • Eggersdorfer, M. L., and Pratsinis, S. E. (2013). Restructuring of Aggregates and Their Primary Particle Size Distribution During Sintering. AIChE J., 59:1118–1126.
  • Filippov, A. V., Zurita, M., and Rosner, D. E. (2000). Fractal-Like Aggregates: Relation Between Morphology and Physical Properties. J. Colloid Interf. Sci., 229:261–273.
  • Freney, E., Adachi, K., and Buseck, P. (2010). Internally Mixed Atmospheric Aerosol Particles: Hygroscopic Growth and Light Scattering. J. Geophys. Res., 115:D19210.
  • Kahnert, M., Nousiainen, T., Lindqvist, H., and Ebert, M. (2012). Optical Properties of Light Absorbing Carbon Aggregates Mixed with Sulfate: Assessment of Different Model Geometries for Climate Forcing Calculations. Opt. Exp., 20:10042–10058.
  • Kandilian, R., Heng, R. L., and Pilon, L. (2015). Absorption and Scattering by Fractal Aggregates and by their Equivalent Coated Spheres. J. Quant. Spectrosc. Radiat. Transf., 151:310–326.
  • Khalizov, A., Xue, H., Wang, L., Zheng, J., and Zhang, R. (2009a). Enhanced Light Absorption and Scattering by Carbon Soot Aerosol Internally Mixed Sulfuric Acid. J. Phys. Chem., A113:1066–1074.
  • Khalizov, A., Zhang, R., Zhang, D., Xue, H., Pagels, J., and McMurry, P. H. (2009b). Formation of Highly Hygroscopic Soot Aerosols upon Internal Mixing With Sulfuric Acid Vapor. J. Geophys. Res., 114:D05208.
  • Litton, C. D., and Perera, I. E. (2014). Modeling the Optical Properties of Combustion-Generated Fractal Aggregates. Fuel, 130:215–220.
  • Liu, F., and Snelling, D. R. (2008). Evaluation of the Accuracy the RDG Approximation for the Absorption and Scattering Properties of Fractal Aggregates of Flame-Generated Soot. in 40th Thermophysics Conference, 23–26 June, Seattle, Washington, USA.
  • Liu, F., Yon, J., and Bescond, A. (2016). On the Radiative Properties of Soot Aggregates-Part 2: Effects of Coating. J. Quant. Spectrosc. Radiat. Transf., 172:134–145.
  • Lu, Z., Hao, J., Hu, L., and Takekawa, H. (2008). The Compaction of Soot Particles Generated by Spark Discharge in the Propene Ozonolysis System. J. Aerosol Sci., 39:897–903.
  • Mackowski, D. W., and Mishchenko, M. I. (1996). Calculation of the T-Matrix and the Scattering Matrix for Ensembles of Spheres. J. Opt. Soc. Am., A13:2266–2278.
  • Mackowski, D. W., and Mishchenko, M. I. (2011). A Multiple Sphere T-Matrix Fortran Code for use on Parallel Computer Clusters. J. Quant. Spectrosc. Radiat. Transf., 112:2182–2192.
  • Mikhailov, E. F., Vlasenko, S. S., Kramer, L., and Niessner, R. (2001). Interaction of Soot Aerosol Particles With Water Droplets: Influence of Surface Hydrophilicity. J. Aerosol Sci., 32:697–711.
  • Mikhailov, E. F., Vlasenko, S. S., Podgorny, I. A., Ramanathan, V., and Corrigan, C. E. (2006). Optical Properties of Soot-Water Drop Agglomerates: An Experimental Study. J. Geophys. Res., 111:D07209.
  • Miljevic, B., Surawski, N. C., Bostrom, T., and Ristovski, Z. D. (2012). Restructuring of Carbonaceous Particles upon Exposure to Organic and Water Vapours. J. Aerosol Sci., 47:48–57.
  • Oh, C., and Sorensen, C. M. (1997). The Effect of Overlap between Monomers on the Determination of the Fractal Cluster Morphology. J. Colloid. Interf. Sci., 193:17–25.
  • Olfert, J. S., Symonds, J. P. R., and Collings, N. (2007). The Effective Density and Fractal Dimension of Particles Emitted from a Light-Duty Diesel Vehicle With a Diesel Oxidation Catalyst. Aerosol Sci., 38:69–82.
  • Pósfai, M., Anderson, J. R., Buseck, P. R., and Sievering, H. (1999). Soot and Sulfate Aerosol Particles in the Remote Marine Troposphere. J. Geophys. Res., 104:21685–21693.
  • Qiu, C., Khalizov, A. F., and Zhang, R. (2012). Soot Aging from OH-Initiated Oxidation of Toluene. Environ. Sci. Technol., 46:9464–9472.
  • Scarnato, B. V., Vahidinia, S., Richard, D. T., and Kirchstetter, T. W. (2013). Effects of Internal Mixing and Aggregate Morphology on Optical Properties of Black Carbon using a Discrete Dipole Approximation Model. Atmos. Chem. Phys., 13:5089–5101.
  • Schmid, H.-J., Tejwani, S., Artelt, C., and Peukert, W. (2004). Monte Carlo Simulation of Aggregate Morphology for Simultaneous Coagulation and Sintering. J. Nanopart. Res., 6:613–626.
  • Schnaiter, M., Linke, C., Möhler, O., Naumann, K.-H., Saathoff, H., Wagner, R., and Schurath, U. (2005). Absorption Amplification of Black Carbon Internally Mixed with Secondary Organic Aerosol. J. Geophys. Res., 110:D19204.
  • Shen, Y., Draine, B. T., and Johnson, E. T. (2008). Modeling Porous Grains With Ballistic Aggregates. I. Geometry and Optical Properties. Astrophys. J., 689:260–275.
  • Shiraiwa, M., Kondo, Y., Iwamoto, T., and Kita, K. (2010). Amplification of Light Absorption of Black Carbon by Organic Coating. Aerosol Sci. Technol., 44:46–54.
  • Soewono, A., and Rogak, S. N. (2013). Morphology and Optical Properties of Numerically Simulated Soot Aggregates. Aerosol Sci. Technol., 47:267–274.
  • Um, J., and McFarquhar, G. M. (2013). Optimal Numerical Methods for Determining the Orientation Averages of Single-Scattering Properties of Atmospheric Ice Crystals. J. Quant. Spectrosc. Radiat. Transf., 127:207–223.
  • Wu, Y., Cheng, T., Zheng, L., and Chen, H. (2016). Models for the Optical Simulations of Fractal Aggregated Soot Particles Thinly Coated with Non-absorbing Aerosols. J. Quant. Spectrosc. Radiat. Transf., 182:1–11.
  • Wu, Y., Cheng, T., Zheng, L., Chen, H., and Xu, H. (2015). Single Scattering Properties of Semi-Embedded Soot Morphologies With Intersecting and Non-Intersecting Surfaces of Absorbing Spheres and Non-Absorbing Host. J. Quant. Spectrosc. Radiat. Transf., 157:1–13.
  • Yin, J. Y., and Liu, L. H. (2010). Influence of Complex Component and Particle Polydispersity on Radiative Properties of Soot Aggregate in Atmosphere. J. Quant. Spectrosc. Radiat. Transf., 111:2115–2126.
  • Yon, J., Bescond, A., and Liu, F. (2015). On the Radiative Properties of Soot Aggregates Part 1: Necking and Overlapping. J. Quant. Spectrosc. Radiat. Transf., 162:197–206.
  • Zhang, H., Zhou, C., Wang, Z., Zhao, S., and Li, J. (2015). The Influence of Different Black Carbon and Sulfate Mixing Methods on the Their Optical and Radiative Properties. J. Quant. Spectrosc. Radiat. Transf., 157:105–116.
  • Zhang, R., Khalizov, A., Pagels, J., Zhang, D., Xue, H., and McMurry, H. (2008). Variability in Morphology, Hygroscopicity, and Optical Properties of Soot Aerosols during Atmospheric Processing. PNAS, 105:10291–10296.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.