1,186
Views
9
CrossRef citations to date
0
Altmetric
Articles

Mobility of nanofiber, nanorod, and straight-chain nanoparticles in gases

, &
Pages 587-601 | Received 01 Aug 2016, Accepted 03 Jan 2017, Published online: 23 Jan 2017

References

  • Alonso, M., and Kousaka, Y. (1996). Mobility Shift in the Differential Mobility Analyser due to Brownian Diffusion and Space-Charge Effects. J. Aerosol Sci., 27:1201–1225.
  • Asgharian, B., Yu, C. P., and Gradon, L. (1988). Diffusion of Fibers in a Tubular Flow. Aerosol Sci. Technol., 9(3):213–219.
  • Batchelor, G. K. (1970). Slender-Body Theory for Particles of Arbitrary Cross-Section in Stokes Flow. J. Fluid Mech., 44:419–440.
  • Boulaud, D., and Diouri, M. (1988). A New Inertial and Diffusional Device (SDI 2000). J. Aerosol Sci., 19(7):927–930.
  • Brenner, H. (1963). The Stokes Resistance of an Arbitrary Particle. Chem. Engg. Sci., 18(1):1–25.
  • Brenner, H. (1967). Coupling between the Translational and Rotational Brownian Motions of Rigid Particles of Arbitrary Shape. J. Colloid Interf. Sci., 23:407–436.
  • Burgers, J. M. (1938). Second Report on Viscosity and Plasticity. Prepared by the Committee for the Study of Viscosity of the Academy of Sciences at Amsterdam. Kon. Ned. Akad. Wet. Verhand, 16:1–287.
  • Chan, P., and Dahneke, B. (1981). Free-Molecule Drag on Straight Chains of Uniform Spheres. J. Appl. Phys., 52(5):3106–3110.
  • Cheng, Y. S. (1991). Drag Forces on Nonspherical Aerosol Particles. Chem. Eng. Comm., 108:201–223.
  • Cheng, Y. S., Allen, M. D., Gallegos, D. P., Yeh, H. C., and Peterson, K. (1988). Drag Force and Slip Correction of Aggregate Aerosols. Aerosol Sci. Technol., 8(3):199–214.
  • Chhabra, R. P., Singh, T., and Nandrajog, S. (1995). Drag on Chains and Agglomerates of Spheres in Viscous Newtonian and Power Law Fluids. Can. J. Chem. Eng., 73:566–571.
  • Cichocki, B., and Hinsen ,K. (1995). Stokes Drag on Conglomerates of Spheres. Phys. Fluids, 7(2):285–291.
  • Cunningham, E. (1910). On the Velocity of Steady Fall of Spherical Particles Through Fluid Medium. Proc. Roy. Soc. A., 83:357–365.
  • Dahneke, B. E. (1973a). Slip Correction Factors for Nonspherical Bodies - II. Free Molecule Flow. Aerosol Sci., 4:147–161.
  • Dahneke, B. E. (1973b). Slip Correction Factors for Nonspherical Bodies - III. The Form of the General Law. Aerosol Sci., 4:163–170.
  • Davies, C. N. (1945). Definitive Equations for the Fluid Resistance of Spheres. Proc. Phys. Soc., 57:259–270.
  • DeCarlo, P., Worsnop, D. R., Slowik, J. G., Davidovits, P., and Jimenez, J. L. (2004). Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part I. Theory, Aerosol Sci. Tee/mol. 38(12):1185–1205.
  • Einstein, A. (1905). On the Motion of Small Particles Suspended in a Stationary Liquid, as Required by the Molecular Kinetic Theory of Heat. Ann. Phys., 17(8):549–560.
  • Epstein, P. S. (1923). On the Resistance Experienced by Spheres in their Motion Through Gases. Phys. Rev., 23:710–733.
  • Fan, F. G., and Ahmadi, G. (1995). A Sublayer Model for Wall Deposition of Ellipsoidal Particles in Turbulent Streams. Journal of Aerosol Science, 26:831–840.
  • Fan, F. G., and Ahmadi, G. (2000). Wall Deposition of Small Ellipsoids from Turbulent Air Flows—A Brownian Dynamics Simulation. J. Aerosol Sci., 31(10):1205–1229.
  • Feng, Y. (2012). Comments on Paper: ‘‘Transport and Deposition on Ellipsoidal Fibers in Low Reynolds Number Flows'’ from L. Tian, G. Ahmadi, Z. Wang, P. K. Hopke J. Aerosol Sci., 45:1–18. J. Aerosol Sci., 52(10):127–128.
  • Fuchs, N. A. (1964). The Mechanics of Aerosols. Pergamon Press, Oxford.
  • Gallily, I., and Cohen, A. H. (1976). On the Stochastic Nature of the Motion of Nonspherical Aerosol Particles I. The Aerodynamic Radius Concept. J.Colloid Interf. Sci., 56(3):443–459.
  • Gentry, J. W., Spurny, K. R., and Schörmann, J. (1991). The Diffusion Coefficients for Ultrathin Chrysotile Fibers. J. Aerosol Sci., 22(7):869–880.
  • Gopalakrishnan, R., McMurry, P. H., and Hogan, C. J. (2015a). The Electrical Mobilities and Scalar Friction Factors of Modest-to-High Aspect Ratio Particles in the Transition Regime. J. Aerosol Sci., 82:24–39.
  • Gopalakrishnan, R., McMurry, P. H., and Hogan, C. J. (2015b). The Bipolar Diffusion Charging of Nanoparticles: A Review and Development of Approaches for Non-Spherical Particles. Aerosol Sci. Technol., 49:1181–1194.
  • Gopalakrishnan, R., Thajudeen, T., and Hogan, C. J. (2011). Collision Limited Reaction Rates for Arbitrarily Shaped Particles Across the Entire Diffusive Knudsen Number Range. J. Chem. Phys., 135:054302.
  • Haider, A., and Levenspiel, O. (1989). Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles. Powder Technol., 58:63–70.
  • Hartman, M., and Yates, J. G. (1993). Free-Fall of Solid Particles Through Fluids, Collect. Czechoslov. Chem. Commun., 58(5):961–982.
  • Hinds, H. (1999). Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. Wiley, New York.
  • Hogan, C. J., and Fernandez de la Mora, J. (2011). Ion Mobility Measurements of Non-Denatured 12–150 kDa Proteins and Protein Multimers by Tandem Differential Mobility Analysis – Mass Spectrometry (DMA-MS). J. Am. Soc. Mass. Spectrom., 22:158–172.
  • Horvath, H. (1974). The Sedimentation Behavior of Non-Spherical Particles. Staub. Reinhaltung der Luft, 34(7):197–202.
  • Jayne, J. T., Leard, D. C., Zhang, X. F., Davidovits, P., Smith, K. A., Kolb, C. E., and Worsnop, D. R. (2000). Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles. Aerosol Sci. Technol., 33:49–70.
  • Jeffery, G. B. (1922). The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid. Proc. Roy. Soc. A, 102:161–179.
  • Knutson, E. O., and Whitby, K. T. (1975). Aerosol Classification by Electric Mobility: Apparatus, Theory, and Application. J. Aerosol Sci., 6:443–451.
  • Lall, A. A., and Friedlander, S. K. (2006). On-Line Measurement of Ultrafine Aggregate Surface Area and Volume Distributions by Electrical Mobility Analysis: I. Theoretical Analysis. J. Aerosol Sci., 37(3):260–271.
  • Lasso, I. A., and Weidman, P. D. (1986). Stokes Drag on Hollow Cylinders and Conglomerates. Phys. Fluids, 29(12):3921–3934.
  • Mason, E. A., and McDaniel, E. W. (1988). Transport Properties of Ions in Gases. Wiley, New York.
  • McNown, J. S., and Malaika, J. (1950). Effects of Particle Shape on Settling Velocity at Low Reynolds Numbers. Trans. Am. Geophys. Union, 31(1):74–82.
  • Melas, A. D., Isella, L., Konstandopoulos, A. G., and Drossinos, Y. (2014). Friction Coefficient and Mobility Radius of Fractal-Like Aggregastes in the Transition Regime. Aerosol Sci. Technol., 48:1320–1331.
  • Melas, A. D., Isella, L., Konstandopoulos, A. G., and Drossinos, Y. (2015). A Methodology to Calculate the Friction Coefficient in the Transition Regime: Application to Straight Chains. J. Aerosol Sci., 80:40–50.
  • Millikan, R. A. (1923). The General Law of Fall of a Small Spherical Body through a Gas, and Its Bearing upon the Nature of Molecular Reflection from Surfaces. Phys. Rev., 22:1–23.
  • Oberbeck, A. J. (1876). Uber stationare Flussigkeitcbewegungen mit Berucksichtigung der inner Reibung. J. Reine Agnew. Math., 81:62–80.
  • Oseen, C. W. (1927). Hydrodynamik. Akademische Verlagsgesellshaf, Leipzig.
  • Pettyjohn, E. S., and Christiansen, E. R. (1948). Effect of Particle Shape on Free Settling Rates of Isometric Particles. Chem. Eng. Prog., 44:157–172.
  • Rogak, S. N., and Flagan, R. C. (1992). Coagulation of Aerosol Agglomerates in the Transition Regime. J. Colloid Interf. Sci., 151(1):203–224.
  • Rogak, S. N., Flagan, R. C., and Nguyen, H. V. (1993). The Mobility and Structure of Aerosol Agglomerates. Aerosol Sci. Technol., 18(1):25–47.
  • Shapiro, M., and Goldenberg, M. (1993). Deposition of Glass Fiber Particles from Turbulent Flow in a Pipe. Journal of Aerosol Science, 24:65–87.
  • Stober, W. (1971). A Note on the Aerodynamic Diameter and the Mobility of Non-Spherical Aerosol Particles. J. Aerosol Sci., 2:453–456.
  • Stober, W. (1972). Dynamic Shape Factors of Non-Spherical Aerosol Particles. in Assessment of Airborne Particles, T. Mercer, ed., Charles C. Thomas Publisher, Springfield, IL, pp. 249–289.
  • Stolzenburg, M. R., and McMurry, P. H. (2008). Equations Governing Single and Tandem DMA Configurations and a New Lognormal Approximation to the Transfer Function. Aerosol Sci. Technol., 42:421–432.
  • Thomas, J. W. (1955). The Diffusion Battery Method for Aerosol Particle Size Determination. J. Colloid Sci., 10(3):246–255.
  • Tian, L., and Ahmadi, G. (2012). Transport and Deposition of Ellipsoidal Fibers in Low Reynolds Number Flow. J. Aerosol Sci., 45:1–18.
  • Tian, L., and Ahmadi, G. (2016a). Transport and Deposition of Nano-Fibers in Human Upper Tracheobronchial Airways. J. Aerosol Sci., 91:22–32.
  • Tian, L., and Ahmadi, G. (2016b). On Nano-Ellipsoid Transport and Deposition in the Lung First Bifurcation-Effect of Slip Correction. J. Fluids Eng., 138(10):101101.1–101101.14.
  • Tian, L., Ahmadi, G., and Tu, J. Y. (2016). Brownian Diffusion of Fibers. Aerosol Sci. Technol., 50(5):474–486.
  • Tran-Cong, S., Gay, M., and Michaelides, E. E. (2004). Drag Coefficients of Irregularly Shaped Particles. Powder Technol., 139(1):21–32.
  • Wadell, H. (1933). Sphericity and Roundness of Rock Particles. J. Geol., 41:310–331.
  • Wang, X. L., Kruis, F. E., and McMurry, P. H. (2005). Aerodynamic Focusing of Nanoparticles: I. Guidelines for Designing Aerodynamic Lenses for Nanoparticles. Aerosol Sci. Technol., 39:611–623.
  • Whitby, K. T., and Clark, W. E. (1966). Electrical Aerosol Particle Counting and Size Distribution Measuring System for the 0.015 to 1 µm Size Range. Tellus, 18:573–586.
  • Zhang, C., Thajudeen, T., Larriba, C., Schwartzentruber, T. E., and Hogan, C. J. (2012). Determination of the Scalar Friction Factor for Non-Spherical Particles and Aggregates Across the Entire Knudsen Number Range by Direct Simulation Monte Carlo (DSMC). J. Aerosol Sci., 46:1065–1078.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.