940
Views
12
CrossRef citations to date
0
Altmetric
Articles

Size and volatility of particle emissions from an ethanol-fueled HCCI engine

, , &
Pages 614-625 | Received 03 Jun 2016, Accepted 09 Jan 2017, Published online: 21 Feb 2017

References

  • Arcoumanis, C., Bae, C., Crookes, R., and Kinoshita, E. (2008). The Potential of Di-methyl Ether (DME) as an Alternative Fuel for Compression-ignition Engines: A review. Fuel, 87(7):1014–1030.
  • Abdul-Khalek, I., Kittelson, D., and Brear, F. (2000). Nanoparticle Growth During Dilution and Cooling of Diesel Exhaust: Experimental Investigation and Theoretical Assessment. SAE Technical Paper Series, 2000-01-0515.
  • Abdul-Khalek, I., Kittelson, D. B., and Brear, F. (1999). The Influence of Dilution Conditions on Diesel Exhaust Particle Size Distribution Measurement. SAE Technical Paper Series, 1999-01-1142.
  • Apple, J., Gladis, D., Watts, W., and Kittelson, D. (2009). Measuring Diesel Ash Emissions and Estimating Lube Oil Consumption Using a High Temperature Oxidation Method. SAE Int. J. Fuels Lubr., 2(1):850–859.
  • Aravelli, K., and Heibel, A. (2007). Improved Lifetime Pressure Drop Management for Robust Cordierite (RC) Filters with Asymmetric Cell Technology (ACT). SAE Technical Paper Series Series, 2007-01-0920.
  • Arnold, F., Pirjola, L., Rönkkö, T., Reichl, U., Schlager, H., Lähde, T., Heikkilä, J., and Keskinen, J. (2012). First Online Measurements of Sulfuric Acid Gas in Modern Heavy-Duty Diesel Engine Exhaust: Implications for Nanoparticle Formation. Environ.Sci. Technol., 46(20):11227–11234.
  • Audette, W. E., and Wong, V. W. (1999). A Model for Estimating Oil Vaporization from the Cylinder Liner as a Contributing Mechanism to Engine Oil Consumption. SAE Technical Paper Series, 1999-01-1520.
  • Bielaczyc, P., Szczotka, A., Swiatek, A., and Woodburn, J. (2012). Investigations of Ammonia Emissions from Euro 5 Passenger Cars over a Legislative Driving Cycle. Proceedings of the FISITA 2012 World Automotive Congress; Springer-Verlag, Berlin, 189:671–685.
  • Bullock, D. S., and Olfert, J. S. (2014). Size, Volatility, and Effective Density of Particulate Emissions from a Homogeneous Charge Compression Ignition Engine Using Compressed Natural Gas. J. Aerosol. Sci., 75:1–8.
  • Cooper, B.J., and Roth, S.A. (1991). Flow-through Catalysts for Diesel Engine Emissions Control. Platinum Met. Rev., 35:178–187.
  • De Filippo, A., and Maricq, M.M. (2008). Diesel Nucleation Mode Particles: Semivolatile or Solid? Environ. Sci. Technol., 42(21):7957–7962.
  • Du, H., and Yu, F. (2008). Nanoparticle Formation in the Exhaust of Vehicles Running on Ultra-low Sulfur Fuel. Atmos. Chem. Phys., 8:4729–4739.
  • Franklin, L. (2010). Effects of Homogeneous Charge Compression Ignition (HCCI) Control Strategies on Particulate Emissions of Ethanol Fuel. Ph.D. thesis, University of Minnesota.
  • Givens, W., Buck, W., Jackson, A., Kaldor, A. et al. (2003). Lube Formulation Effects on Transfer of Elements to Exhaust After-Treatment System Components. SAE Technical Paper Series, 2003-01-3109.
  • Givens, W.A., Buck, W.H., JacksonA., Kaldor, A., Hertzberg, A., Moehrmann, W., Mueller-Lunz, S., PelzN., and Wenninger, G. (2003). Lubricant Formulation Effects on Transfer of Elements to Exhaust After-treatment System Components. SAE Technical Paper Series, 2003-01-3109.
  • Gomes Antunes, J. M., Mikalsen, R., and Roskilly, A. P. (2008). An Investigation of Hydrogen-fueled HCCI Engine Performance and Operation. Int. J. Hydrogen Energy, 33(20):5823–5828.
  • Hasegawa, R., and Yanagihara, H. (2003). HCCI Combustion in DI Diesel Engine. SAE Technical Paper Series, 2003-01-0745.
  • Hinds, W.C. (2000). Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles 2nd Ed. John Wiley & Sons, Hoboken, NJ.
  • Imtenan, S., Varman, M., Masjuki, H.H., Kalam, M.A., Sajjad, H., Arbab, M.I., and Fattah, I.M. (2014). Impact of Low Temperature Combustion Attaining Strategies on Diesel Engine Emissions for Diesel and Biodiesels: A review. Energy Convers. Manage., 80:329–356.
  • Inoue, M., Murase, A., Yamamoto, M., and Kubo, S. (2006). Analysis of Volatile Nanoparticles Emitted from Diesel Engine using TOF-SIMS and Metal-assisted SIMS (MetA-SIMS). Appl. Surface Sci., 252(19):7014–7017.
  • Jayaratne, E., Meyer, N., Ristovski, Z., and Morawska, L. (2012). Volatile Properties of Particles Emitted by Compressed Natural Gas and Diesel Buses During Steady-state and Transient Driving Modes. Environ. Sci. Technol., 46:196–203.
  • Karjalainen, P., Pirjola, L., Heikkilä, J., Lähde, T., Tzamkiozis, T., Ntziachristos, L., Keskinen, J., and Rönkkö, T. (2014). Exhaust Particles of Modern Gasoline Vehicles: Laboratory and On-Road Study. Atmos. Environ., 97:262–270.
  • Karlsson, H. L. (2004). Ammonia, Nitrous Oxide and Hydrogen Cyanide Emissions from Five Passenger Vehicles. Sci. Total Environ., 334–335:125–132.
  • Kaiser, E. W., Yang, J., Culp, T., and Maricq, M. M. (2002). Homogeneous Charge Compression Ignition Engine-Out Emissions—Does Flame Propagation Occur in Homogeneous Charge Compression Ignition? Int. J. Engine Res., 3(4):185–195.
  • Kawamoto, K., Araki, T., Shinzawa, M., Kimura, S. et al. (2004). Combination of Combustion Concept and Fuel Property for Ultra-Clean DI Diesel. SAE Technical Paper Series, 2004-01-1868.
  • Keenan, M., and Thomson, J. (2004). The Challenges of Meeting Future Emissions Legislation with a Novel Low Precious Metal TWC. SAE Technical Paper Series, 2004-01-2984.
  • Korakianitis, T., Namasivayam, A.M., and Crookes, R.J. (2011). Natural-gas Fueled Spark-ignition (SI) and Compression-ignition (CI) Engine Performance and Emissions. Prog.Energy Combust. Sci., 37(1):89–112.
  • Kittelson, D., Watts, W., and Johnson, J. (2002). Diesel Aerosol Sampling Methodology, CRC E-43, final report No.E-43. Available at: http://www.me.umn.edu/centers/mel/reports/crce43ts.pdf
  • Kittelson, D. B. (1998). Engines and Nanoparticles: A Review. J. Aerosol Sci., 29(5–6):575–588.
  • Kittelson, D., and Kraft, M. (2014). Particle Formation and Models. Encyclopedia of Automotive Engineering. John Wiley & Sons Ltd, Chichester, pp. 107–130.
  • Kittleson, D., Bika, A., Fang, W., Franklin, L., and Huang, B. (2011). Particles from Soot Free Engines. 15th ETH-Conference on Combustion Generated Nanoparticles, Zurich, Switzerland.
  • Kittelson, D. B., Watts, W.F., Johnson, J.P., Thorne, C., McCann, C., Payne, M., Goodier, S., Warrens, C., Preston, H., Zink, U., Pickles, D., Goersmann, C., Twigg, M.V., Walker, A.P., and Boddy, R. (2008). Effect of Fuel and Lube Oil Sulfur on the Performance of a Diesel Exhaust Gas Continuously Regenerating Trap. Environ. Sci. Technol., 42(24):9276–9282.
  • Kohse-Hoinghaus, K., Osswald, P., Cool, T. A., Kasper, T., Hansen, N., Qi, F., Westbrook, C. K., and Westmoreland, P. R. (2010). Biofuel Combustion Chemistry: From Ethanol to Biodiesel. Angew. Chem., Int. Ed., 49:3572–3597.
  • Lähde, T., Rönkkö, T., Virtanen, A., Solla, A., Kytö, M., Söderström, C., and Keskinen, J. (2010). Dependence between Nonvolatile Nucleation Mode Particle and Soot Number Concentrations in an EGR Equipped Heavy-Duty Diesel Engine Exhaust. Environ. Sci. Technol., 44(8):3175–3180.
  • Lähde, T., Rönkkö, T., Virtanen, A., Schuck, T.J., Pirjola, L., Hämeri, K., Kulmala, M., Arnold, F., Rothe, D., and Keskinen, J. (2009). Heavy-duty Diesel Engine Exhaust Aerosol Particle and Ion Measurements. Environ. Sci. Technol., 43(1):163–168.
  • Lemmetty, M., Pirjola, L., Makela, J. M., Ronkko, T., and KeskinenJ. (2006). Computation of Maximum Rate of Water-sulphuric Acid Nucleation in Diesel Exhaust. J. Aerosol Sci., 37:1596–1604.
  • Lemmetty, M., Vehkamäki, H., Virtanen, A., Kulmala, M., and Keskinen, J. (2007). Homogeneous Ternary H2SO4–NH3–H2O Nucleation and Diesel Exhaust: a Classical Approach. Aerosol Air Qual. Res., 7:489–499.
  • Lucachick, G., Curran, S., Storey, J., PrikhodkoV., and Northrop, W. F. (2016). Volatility Characterization of Nanoparticles from Single and Dual-Fuel Low Temperature Combustion in Compression Ignition Engines. Aerosol Sci. Technol., 50(5):436–447.
  • Lü, X., Chen, W., and Huang, Z. (2005). A Fundamental Study on the Control of the HCCI Combustion and Emissions by Fuel Design Concept Combined with Controllable EGR. Part 1.The Basic Characteristics of HCCI Combustion. Fuel, 84(9):1074–1083.
  • Mack, J. H., Aceves, S. M., and Dibble, R. W. (2009). Demonstrating Direct Use of Wet Ethanol in a Homogeneous Charge Compression Ignition (HCCI) Engine. Energy, 34(6):782–787.
  • Mathis, U., Ristimäki, J., Mohr, M., Keskinen, J., Ntziachristos, L., Samaras, Z., et al. (2004). Sampling Conditions for the Measurement of Nucleation Mode Particles in the Exhaust of a Diesel Vehicle. Aerosol Sci. Technol., 38(12):1149–1160.
  • Miller, A. L., Stipe, C. B., Habjan, M. C., and Ahlstrand, G. G. (2007). Role of Lubrication Oil in Particulate Emissions from a Hydrogen-Powered Internal Combustion Engine. Environ. Sci. Technol., 41(19):6828–6835.
  • Misztal, J., Xu, H., Tsolakis, A., Wyszynski, M. L., Constandinides, G., Price, P., et al. (2009). Influence of Inlet Air Temperature on Gasoline HCCI Particulate Emissions. Combustion Sci. Technol., 181(5):695–709.
  • Mirabel, P., and Katz, J. L. (1974). Binary Homogeneous Nucleation as a Mechanism for the Formation of Aerosols. J. Chem. Phys., 60:1138–1144.
  • Najt, P. M., and Foster, D. E. (1983). Compression-ignited Homogeneous Charge Combustion. SAE Technical Paper Series, 830264.
  • Nemoto, S., Kishi, Y., Matsuura, K., Miura, M., et al. (2004). Impact of Oil-derived Ash on Continuous Regeneration-type Diesel Particulate Filter - JCAPII Oil WG Report. SAE Technical Paper Series, 2004-01-1887.
  • Nevin, R., Sun, Y., Gonzalez, D. M., and Reitz, R. (2007). PCCI Investigation Using Variable Intake Valve Closing in a Heavy Duty Diesel Engine. SAE Technical Paper Series, 2007-01-0903. doi:10.4271/2007-01-0903.
  • Ogawa, H., Kimura, S., Koike, M., and Enomoto, Y. (2000). A Study of Heat Rejection and Combustion Characteristics of a Low-temperature and Pre-mixed Combustion Concept Based on Measurement of Instantaneous Heat Flux in a Direct-Injection Diesel Engine. SAE Technical Paper Series, 2000-01-2792.
  • Onishi, S., Han Jo, S., Shoda, K., Do Jo, P., and Kato, S. (1979). Active Thermoatmosphere Combustion (ATAC): A New Combustion Process for Internal Combustion Engines. SAE Technical Paper Series, 790501.
  • Orsini, D. A., Wiedensohler, A., Stratmann, F., and Covert, D. S. (1999). A New Volatility Tandem Differential Mobility Analyzer to Measure the Volatile Sulfuric Acid Aerosol Fraction. J. Atmos.Ocean. Technol., 16(6):760–772.
  • Pirjola, L., Karl, M., Rönkkö, T., and Arnold, F. (2015). Model Studies of Volatile Diesel Exhaust Particle Formation: Organic Vapours Involved in Nucleation and Growth? Atmos. Chem. Phys. Discuss., 15:4219–4263.
  • Price, P., Stone, R., Misztal, J., Xu, H., Wyszynski, M., Wilson, T., et al. (2007). Particulate Emissions From a Gasoline Homogeneous Charge Compression Ignition Engine. SAE Technical Paper Series, 2007-01-0209.
  • Rader, D. J., and McMurry, P. H. (1986). Application of the Tandem Differential Mobility Analyzer to Studies of Droplet Growth or Evaporation. J Aerosol Sci., 17(5):771–787.
  • Reitz, R.D., and Duraisamy, G. (2015). Review of High Efficiency and Clean Reactivity Controlled Compression Ignition (RCCI) Combustion in Internal Combustion Engines. Prog. Energy Combust. Sci., 46:12–71.
  • Rönkkö, T., Lähde, T., Heikkilä, J., Pirjola, L., Bauschke, U., Arnold, F., Schlager, H., Rothe, D., Yli-Ojanperä, J., and Keskinen, J. (2013). Effects of Gaseous Sulphuric Acid on Diesel Exhaust Nanoparticle Formation and Characteristics. Environ. Sci. Technol., 47(20):11882–11889.
  • Rönkkö, T., Virtanen, A., Vaaraslahti, K., Keskinen, J., Pirjola, L., and Lappi, M. (2006). Effect of Dilution Conditions and Driving Parameters on Nucleation Mode Particles in Diesel Exhaust: Laboratory and On-road Study. Atmos. Environ., 40:2893–2901.
  • Ronkko, T., Pirjola, L., Ntziachristos, L., Heikkila, J., Karjalainen, P., Hillamo, R., and Keskinen, J. (2014). Vehicle engines produce nanoparticles even when not fuelled. Environ. Sci. Technol., 48:2043–2050.
  • Sakurai, H., Tobias, H. J., Park, K., Zarling, D., Docherty, K. S., Kittelson, D. B., et al. (2003). On-line Measurements of Diesel Nanoparticle Composition and Volatility. Atmos. Environ., 37(9–10):1199–1210.
  • Sappok, A., Santiago, M., Vianna, T., and Wong, V. (2009). Characteristics and Effects of Ash Accumulation on Diesel Particulate Filter Performance: Rapidly Aged and Field Aged Results. SAE Technical Paper Series, 2009-01-1086.
  • Schuetzle, D., Siegl, W. O., Jensen, T. E., Dearth, M. A., Kaiser, E. W., Gorse, R., Kreucher, W., and Kulik, E. (1994). The Relationship Between Gasoline Composition and Vehicle Hydrocarbon Emissions: A Review of Current Studies and Future Research Needs. Environ. Health Perspect., 102(Suppl. 4):3–12.
  • Seinfeld, J. H., and Pandis, S. N. (1998). Atmospheric Chemistry and Physics: from Air Pollution to Climate Change. John Wiley & Sons, Hoboken, NJ.
  • Sgro, L. A., Sementa, P., Vaglieco, B. M., Rusciano, G., D'anna, A., and Minutolo, P. (2012). Investigating the Origin of Nuclei Particles in GDI Engine Exhaust. Combust. Flame, 159(4):1687–1692.
  • Surawski, N. C., Miljevic, B., Roberts, B. A., Modini, R. L., Situ, R., Brown, R. J., et al. (2010). Particle Emissions, Volatility, and Toxicity from an Ethanol Fumigated Compression Ignition Engine. Environ. Sci. Technol., 44(1):229–235.
  • Shudo, T., Ono, Y., and Takahashi, T. (2003). Ignition Control by DME-reformed Gas in HCCI Combustion of DME. SAE Technical Paper Series, 2003-01-1824.
  • Swanson, J., and Kittelson, D. (2010). Evaluation of Thermal Denuder and Catalytic Stripper Methods for Solid Particle Measurements. J. Aerosol Sci., 41(12):1113–1122.
  • Swanson, J., Kittelson, D., Bergmann, A., Giechaskiel, B., and Twigg, M. (2013). A Miniature Catalytic Stripper for use in a Solid Particle Counting System for Particles <23 Nanometers. SAE Int. J. Fuels Lubr., 6(2), doi:10.4271/2013-01-1570.
  • Thring, R. H. (1989). Homogeneous Charge Compression Ignition (HCCI) Engines. SAE Tech. Paper Ser., 892068.
  • Tobias, H. J., Beving, D. E., Ziemann, P. J., Sakurai, H., Zuk, M., McMurry, P. H., et al. (2001). Chemical Analysis of Diesel Engine Nanoparticles using a Nano-DMA/Thermal Desorption Particle Beam Mass Spectrometer. Environ. Sci. Technol., 35(11):2233–2243.
  • Tornehed, P. and Olofsson, U. (2010). Towards a Model for Engine Oil Hydrocarbon Particulate Matter. SAE Int. J. Fuels Lubr., 3(2):543–548.
  • Tsolakis, A., and Megaritis, A. (2005). Partially Premixed Charge Compression Ignition Engine with On-Board H2 Production by Exhaust Gas Fuel Reforming of Diesel and Biodiesel. Int. J. Hydrogen Energy, 30(7):731–745.
  • Vaaraslahti, K., Keskinen, J., Giechaskiel, B., Solla, A., Murtonen, T., and Vesala, H. (2005). Effect of Lubricant on the Formation of Heavy-Duty Diesel Exhaust Nanoparticles. Environ. Sci. Technol., 39:8497–8504.
  • Watson, S.A.G. (2010). Lubricant-Derived Ash—In-Engine Sources and Opportunities for Reduction. Ph.D. thesis, Massachusetts Institute of Technology.
  • Wang, S. C., and Flagan, R. C. (1990). Scanning Electrical Mobility Spectrometer. Aerosol Sci. Technol., 13(2):230–240.
  • Yilmaz, E., Tian, T., Wong, V. W., and Heywood, J. B. (2002). An Experimental and Theoretical Study of the Contribution of Oil Evaporation to Oil Consumption. SAE Tech. Paper Ser., 2002-01-2684.
  • Yilmaz, E., Tian, T., Wong, V. W., and Heywood, J. B. (2004). The Contribution of Different Oil Consumption Sources to Total Oil Consumption in a Spark Ignition Engine. SAE Tech. Paper Ser., 2004-01-2909.
  • Yap, D., Megaritis, A., Peucheret, S., and Wyszynski, M. L. (2004). Effect of Hydrogen Addition on Natural Gas HCCI Combustion. SAE Tech. Paper Ser., 2004-01-1972.
  • Ziemann, P., and McMurry, P. (2001). Chemical Analysis of Diesel Nanoparticles Using a Nano-DMA/Thermal Desorption Particle Beam Mass Spectrometer. Final Report for Phase 2, Coordinating Research Council Contract No. E-43-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.