1,600
Views
23
CrossRef citations to date
0
Altmetric
Articles

Influence of flame-generated ions on the simultaneous charging and coagulation of nanoparticles during combustion

, , , , &
Pages 833-844 | Received 05 Dec 2016, Accepted 04 Mar 2017, Published online: 23 Mar 2017

References

  • Alonso, M., Hashimoto, T., Kousaka, Y., Higuchi, M., and Nomura, T. (1998). Transient Bipolar Charging of a Coagulating Nanometer Aerosol. J. Aerosol Sci., 29:263–270.
  • Alquaity, A. B., Han, J., Chahine, M., Selim, H., Belhi, M., Sarathy, S. M., Bisetti, F., and Farooq, A. (2016). Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames. Combust. Sci. Technol., 189(4):575–594.
  • Biswas, P., and Wu, C.-Y. (2005). Nanoparticles and the Environment. J. Air Waste Manage. Assoc., 55:708–746.
  • Carbone, F., Attoui, M., and Gomez, A. (2016). Challenges of Measuring Nascent Soot in Flames as Evidenced by High-resolution Differential Mobility Analysis. Aerosol Sci. Technol., 50:740–757.
  • Fang, J., Wang, Y., Attoui, M., Chadha, T. S., Ray, J. R., Wang, W.-N., Jun, Y.-S., and Biswas, P. (2014). Measurement of sub-2 nm Clusters of Pristine and Composite Metal Oxides During Nanomaterial Synthesis in Flame Aerosol Reactors. Anal. Chem., 86:7523–7529.
  • Fernández de la Mora, J., and Kozlowski, J. (2013). Hand-held Differential Mobility Analyzers of High Resolution for 1-30nm Particles: Design and Fabrication Considerations. J. Aerosol Sci., 57:45–53.
  • Fialkov, A. B. (1997). Investigations on Ions in Flames. Prog. Energy Combust. Sci., 23:399–528.
  • Friedlander, S. K. (2000). Smoke, Dust, and Haze: Fundamentals of Aerosol Behavior. Oxford University Press, New York, USA.
  • Fuchs, N. (1963). On the Stationary Charge Distribution on Aerosol Particles in a Bipolar Ionic Atmosphere. Geofis. Pura Appl., 56:185–193.
  • Fujimoto, T., Kuga, Y., Pratsinis, S. E., and Okuyama, K. (2003). Unipolar Ion Charging and Coagulation During Aerosol Formation by Chemical Reaction. Powder Technol., 135:321–335.
  • Gopalakrishnan, R., McMurry, P. H., and Hogan Jr, C. J. (2015). The Bipolar Diffusion Charging of Nanoparticles: A Review and Development of Approaches for Non-spherical Particles. Aerosol Sci. Technol., 49:1181–1194.
  • Hoppel, W. A., and Frick, G. M. (1986). Ion-Aerosol Attachment Coefficients and the Steady-State Charge Distribution on Aerosols in a Bipolar Ion Environment. Aerosol Sci. Technol., 5:1–21.
  • Hu, Y., Jiang, H., Li, Y., Wang, B., Zhang, L., Li, C., Wang, Y., Cohen, T., Jiang, Y., and Biswas, P. (2016). Engineering the Outermost Layers of TiO2 Nanoparticles Using in Situ Mg Doping in a Flame Aerosol Reactor. AIChE J, 63:870–880.
  • Jean, L., Swanson, J. J., and Boies, A. M. (2015). Unsteady Bipolar Diffusion Charging in Aerosol Neutralisers: A Non-dimensional Approach to Predict Charge Distribution Equilibrium Behaviour. J. Aerosol Sci., 86:55–68.
  • Jiang, J., Hogan Jr., C. J., Chen, D.-R., and Biswas, P. (2007a). Aerosol Charging and Capture in the Nanoparticle Size Range (6–15nm) by Direct Photoionization and Diffusion Mechanisms. J. Appl. Phys., 102:034904.
  • Jiang, J., Lee, M.-H., and Biswas, P. (2007b). Model for Nanoparticle Charging by Diffusion, Direct Photoionization, and Thermionization Mechanisms. J. Electrostat., 65:209–220.
  • Jones, H. R., and Hayhurst, A. N. (2016). Measurements of the Concentrations of Positive and Negative Ions Along Premixed Fuel-Rich Flames of Methane and Oxygen. Combust. Flame, 166:86–97.
  • Kangasluoma, J., Attoui, M., Korhonen, F., Ahonen, L., Siivola, E., and Petäjä, T. (2016a). Characterization of a Herrmann Type High Resolution Differential Mobility Analyzer. Aerosol Sci. Technol., 50:222–229.
  • Kangasluoma, J., Samodurov, A., Attoui, M., Franchin, A., Junninen, H., Korhonen, F., Kurtén, T., Vehkamäki, H., Sipilä, M., and Lehtipalo, K. (2016b). Heterogeneous Nucleation onto Ions and Neutralized Ions: Insights into Sign-Preference. J. Phys. Chem. C, 120:7444–7450.
  • Kim, S. H., Woo, K. S., Liu, B. Y. H., and Zachariah, M. R. (2005). Method of Measuring Charge Distribution of Nanosized Aerosols. J. Colloid Interf. Sci., 282:46–57.
  • Kim, Y.-H., Yiacoumi, S., Nenes, A., and Tsouris, C. (2016). Charging and Coagulation of Radioactive and Nonradioactive Particles in the Atmosphere. Atmos. Chem. Phys., 16:3449–3462.
  • Laakso, L., Mäkelä, J. M., Pirjola, L., and Kulmala, M. (2002). Model Studies on Ion-Induced Nucleation in the Atmosphere. J. Geophys. Res., 107:4427.
  • Landgrebe, J. D., and Pratsinis, S. E. (1990). A Discrete-Sectional Model for Particulate Production by Gas-phase Chemical Reaction and Aerosol Coagulation in the Free-molecular Regime. J. Colloid Interf. Sci., 139:63–86.
  • Larriba, C., Hogan, C. J. Jr, Attoui, M., Borrajo, R., Garcia, J. F., and de la Mora, J. F. (2011). The Mobility-Volume Relationship Below 3.0 nm Examined by Tandem Mobility-Mass Measurement. Aerosol Sci. Technol., 45:453–467.
  • Li, Q., Li, X., Jiang, J., Duan, L., Ge, S., Zhang, Q., Deng, J., Wang, S., and Hao, J. (2016a). Semi-Coke Briquettes: Towards Reducing Emissions of Primary PM2. 5, Particulate Carbon, and Carbon Monoxide from Household Coal Combustion in China. Sci. Rep., 6:19306.
  • Li, S., Ren, Y., Biswas, P., and Stephen, D. T. (2016b). Flame Aerosol Synthesis of Nanostructured Materials and Functional Devices: Processing, Modeling, and Diagnostics. Progress Energy Combust. Sci., 55:1–59.
  • Liu, P., Arnold, I. J., Wang, Y., Yu, Y., Fang, J., Biswas, P., and Chakrabarty, R. K. (2015). Synthesis of Titanium Dioxide Aerosol Gels in a Buoyancy-Opposed Flame Reactor. Aerosol Sci. Technol., 49:1232–1241.
  • López-Yglesias, X., and Flagan, R. C. (2013). Ion–Aerosol Flux Coefficients and the Steady-State Charge Distribution of Aerosols in a Bipolar Ion Environment. Aerosol Sci. Technol., 47:688–704.
  • Maißer, A., Thomas, J. M., Larriba-Andaluz, C., He, S., and Hogan, C. J. (2015). The Mass-Mobility Distributions of Ions Produced by a Po-210 Source in Air. J. Aerosol Sci., 90:36–50.
  • Reischl, G., Mäkelä, J., Karch, R., and Necid, J. (1996). Bipolar Charging of Ultrafine Particles in the Size Range Below 10 nm. J. Aerosol Sci., 27:931–949.
  • Ren, Y., Li, S., Cui, W., Zhang, Y., and Ma, L. (2017). Low-Frequency AC Electric Field Induced Thermoacoustic Oscillation of a Premixed Stagnation Flame. Combust. Flame., 176:479–488.
  • Seinfeld, J. H., and Pandis, S. N. (2012). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley & Sons, New York.
  • Tigges, L., Jain, A., and Schmid, H.-J. (2015). On the Bipolar Charge Distribution used for Mobility Particle Sizing: Theoretical Considerations. J. Aerosol Sci., 88:119–134.
  • Tsantilis, S., Kammler, H., and Pratsinis, S. (2002). Population Balance Modeling of Flame Synthesis of Titania Nanoparticles. Chem. Eng. Sci., 57:2139–2156.
  • Turns, S. R. (1996). An Introduction to Combustion. McGraw-hill, New York.
  • Ude, S., and De la Mora, J. F. (2005). Molecular Monodisperse Mobility and Mass Standards from Electrosprays of Tetra-Alkyl Ammonium Halides. J. Aerosol Sci., 36:1224–1237.
  • Vemury, S., and Pratsinis, S. E. (1995). Corona-Assisted Flame Synthesis of Ultrafine Titania Particles. Appl. Phys. Lett., 66:3275–3277.
  • Vemury, S., and Pratsinis, S. E. (1996). Charging and Coagulation During Flame Synthesis of Silica. J. Aerosol Sci., 27:951–966.
  • Vemury, S., Pratsinis, S. E., and Kibbey, L. (1997). Electrically Controlled Flame Synthesis of Nanophase TiO2, SiO2, and SnO2 Powders. J. Mater. Res., 12:1031–1042.
  • Volkov, A., Paula, S., and Deamer, D. (1997). Two Mechanisms of Permeation of Small Neutral Molecules and Hydrated Ions Across Phospholipid Bilayers. Bioelectroch. Bioener., 42:153–160.
  • Wang, X., Williams, B., Tang, Y., Huang, Y., Kong, L., Yang, X., and Biswas, P. (2013). Characterization of Organic Aerosol Produced During Pulverized Coal Combustion in a Drop Tube Furnace. Atmos. Chem. Phys., 13:10919–10932.
  • Wang, Y., Fang, J., Attoui, M., Chadha, T. S., Wang, W.-N., and Biswas, P. (2014). Application of Half Mini DMA for Sub 2 nm Particle Size Distribution Measurement in an Electrospray and a Flame Aerosol Reactor. J. Aerosol Sci., 71:52–64.
  • Wang, Y., Kangasluoma, J., Attoui, M., Fang, J., Junninen, H., Kulmala, M., Petäjä, T., and Biswas, P. (2017a). The High Charge Fraction of Flame-generated Particles in the Size Range below 3 nm Measured by Enhanced Particle Detectors. Combust. Flame., 176:72–80.
  • Wang, Y., Kangasluoma, J., Attoui, M., Fang, J., Junninen, H., Kulmala, M., Petäjä, T., and Biswas, P. (2017b). Observation of Incipient Particle Formation During Flame Synthesis by Tandem Differential Mobility Analysis-Mass Spectrometry (DMA-MS). Proc. Combust. Inst., 36(1):745–752.
  • Wang, Y., Liu, P., Fang, J., Wang, W.-N., and Biswas, P. (2015). Kinetics of sub-2 nm TiO2 Particle Formation in an Aerosol Reactor During Thermal Decomposition of Titanium Tetraisopropoxide. J. Nanopart. Res., 17:1–13.
  • Wu, J. J., and Flagan, R. C. (1988). A Discrete-Sectional Solution to the Aerosol Dynamic Equation. J. Colloid Interf. Sci., 123:339–352.
  • Xiong, G., Kulkarni, A., Dong, Z., Li, S., and Stephen, D. T. (2016). Electric-Field-Assisted Stagnation-Swirl-Flame Synthesis of Porous Nanostructured Titanium-Dioxide Films. Proc. Combust. Inst., 36(1):1065–1075.
  • Zhang, Y., Li, S., Yan, W., and Stephen, D. T. (2012). Effect of Size-Dependent Grain Structures on the Dynamics of Nanoparticle Coalescence. J. Appl. Phys., 111:124321.
  • Zhang, Y., Li, S., Yan, W., Yao, Q., and Stephen, D. T. (2011). Role of Dipole-Dipole Interaction on Enhancing Brownian Coagulation of Charge-neutral Nanoparticles in the Free Molecular Regime. J. Chem. Phys., 134:084501.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.