1,138
Views
4
CrossRef citations to date
0
Altmetric
Articles

Atmospheric particle composition-hygroscopic growth measurements using an in-series hybrid tandem differential mobility analyzer and aerosol mass spectrometer

ORCID Icon, , & ORCID Icon
Pages 694-703 | Received 30 Sep 2016, Accepted 24 Jan 2017, Published online: 11 Apr 2017

References

  • Aklilu, Y., Mozurkewich, M., Prenni, A. J., Kreidenweis, S. M., Alfarra, M. R., Allan, J. D., Anlauf, K., Brook, J., Leaitch, W. R., Sharma, S., Boudries, H., and Worsnop, D. R. (2006). Hygroscopicity of Particles at Two Rural, Urban Influenced Sites During Pacific 2001: Comparison with Estimates of Water Uptake from Particle Composition. Atmos. Environ., 40(15):2650–2661, doi:10.1016/j.atmosenv.2005.11.063.
  • Benedict, K. B., Carrico, C. M., Kreidenweis, S. M., Schichtel, B., Malm, W. C., and Collett, J. L. (2013). A Seasonal Nitrogen Deposition Budget for Rocky Mountain National Park. Ecol. Appl., 23(5):1156–1169, doi:10.1890/12-1624.1.
  • Boreddy, S. K. R., Kawamura, K., Mkoma, S., and Fu, P. (2014). Hygroscopic Behavior of Water-Soluble Matter Extracted from Biomass Burning Aerosols Collected at a Rural Site in Tanzania, East Africa. J. Geophys. Res. Atmos., 119:12,233–12,245, doi:10.1002/2014JD021546.
  • Carrico, C. M., Kreidenweis, S. M., Malm, W. C., Day, D. E., Lee, T., Carrillo, J., McMeeking, G. R., and Collett, J. L. (2005). Hygroscopic Growth Behavior of a Carbon-Dominated Aerosol in Yosemite National Park. Atmos. Environ., 39(8):1393–1404, doi:10.1016/j.atmosenv.2004.11.029.
  • Chan, M. N., and Chan, C. K. (2003). Hygroscopic Properties of Two Model Humic-Like Substances and Their Mixtures with Inorganics of Atmospheric Importance. Environ. Sci. Technol., 37:5109–5115.
  • Chan, M. N., and Chan, C. K. (2005). Mass Transfer Effects in Hygroscopic Measurements of Aerosol Particles. Atmos. Chem. Phys., 5(10):2703–2712, doi:10.5194/acp-5-2703-2005.
  • Decarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., Gonin, M., Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop, D. R., and Jimenez, J. L. (2006). Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer. Anal. Chem., 78(24):8281–8289, doi:10.1021/ac061249n.
  • Duplissy, J., DeCarlo, P. F., Dommen, J., Alfarra, M. R., Metzger, A., Barmpadimos, I., Prevot, A. S. H., Weingartner, E., Tritscher, T., Gysel, M., Aiken, A. C., Jimenez, J. L., Canagaratna, M. R., Worsnop, D. R., Collins, D. R., Tomlinson, J., and Baltensperger, U. (2011). Relating Hygroscopicity and Composition of Organic Aerosol Particulate Matter. Atmos. Chem. Phys., 11(3):1155–1165, doi:10.5194/acp-11-1155-2011.
  • Gysel, M., Crosier, J., Topping, D. O., Whitehead, J. D., Bower, K. N., Cubison, M. J., Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H. (2007). Closure Study Between Chemical Composition and Hygroscopic Growth of Aerosol Particles During TORCH2. Atmos. Chem. Phys., 7(24):6131–6144, doi:10.5194/acp-7-6131-2007.
  • Hatch, L. E., Creamean, J. M., Ault, A. P., Surratt, J. D., Chan, M. N., Seinfeld, J. H., Edgerton, E. S., Su, Y., and Prather, K. A. (2011). Measurements of Isoprene-Derived Organosulfates in Ambient Aerosols by Aerosol Time-of-Flight Mass Spectrometry—Part 2: Temporal Variability and Formation Mechanisms. Environ. Sci. Technol., 45(20):8648–8655, doi:10.1021/es2011836.
  • Herich, H., Kammermann, L., Gysel, M., Weingartner, E., Baltensperger, U., Lohmann, U., and Cziczo, D. J. (2008). In Situ Determination of Atmospheric Aerosol Composition as a Function of Hygroscopic Growth, J. Geophys. Res., 113, D16213, doi:10.1029/2008JD009954.
  • Hu, D., Chen, J., Ye, X., Li, L., and Yang, X. (2011). Hygroscopicity and Evaporation of Ammonium Chloride and Ammonium Nitrate: Relative Humidity and Size Effects on the Growth Factor. Atmos. Environ., 45(14):2349–2355, doi:10.1016/j.atmosenv.2011.02.024.
  • IPCC. (2014). IPCC, 2014: Climate Change 2014: Synthesis Report, in Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, R. K. Pachauri, and L. A. Meyer, eds., IPCC, Geneva, Switzerland, 151 pp.
  • Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson, J. (2005). Organic Aerosol and Global Climate Modelling: A Review. Atmos. Chem. Phys., 5(4):1053–1123, doi:10.5194/acp-5-1053-2005.
  • Lanz, V. A., Alfarra, M. R., Baltensperger, U., Buchmann, B., Hueglin, C., and Pr, A. S. H. (2007). Source Apportionment of Submicron Organic Aerosols at an Urban Site by Factor Analytical Modelling of Aerosol Mass Spectra. Atmos. Chem. Phys., 2004:1503–1522.
  • Levin, E. J. T., Kreidenweis, S. M., McMeeking, G. R., Carrico, C. M., Collett Jr., J. L., and Malm, W. C. (2009). Aerosol Physical, Chemical and Optical Properties During the Rocky Mountain Airborne Nitrogen and Sulfur study. Atmos. Environ., 43(11):1932–1939, doi:10.1016/j.atmosenv.2008.12.042.
  • Li, Y. J., Lee, B. P., Su, L., Fung, J. C. H., and Chan, C. K. (2015). Seasonal Characteristics of Fine Particulate Matter (PM) Based on High-Resolution Time-of-Flight Aerosol Mass Spectrometric (HR-ToF-AMS) Measurements at the HKUST Supersite in Hong Kong. Atmos. Chem. Phys., 15(1):37–53, doi:10.5194/acp-15-37-2015.
  • Li, Y. J., Yeung, J. W. T., Leung, T. P. I., Lau, A. P. S., and Chan, C. K. (2012). Characterization of Organic Particles from Incense Burning Using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer. Aerosol Sci. Technol., 46:654–665.
  • Lim, Y. B., Tan, Y., Perri, M. J., Seitzinger, S. P., and Turpin, B. J. (2010). Aqueous Chemistry and Its Role in Secondary Organic Aerosol (SOA) Formation. Atmos. Chem. Phys., 10(21):10521–10539, doi:10.5194/acp-10-10521-2010.
  • Lopez-Yglesias, X. F., Yeung, M. C., Dey, S. E., Brechtel, F. J., and Chan, C. K. (2014). Performance Evaluation of the Brechtel Mfg. Humidified Tandem Differential Mobility Analyzer (BMI HTDMA) for Studying Hygroscopic Properties of Aerosol Particles. Aerosol Sci. Technol., 48(9):969–980.
  • Malm, W. C., Day, D. E., Kreidenweis, S. M., Collett, J. L., Carrico, C. M., McMeeking, G. R., and Lee, T. (2005). Hygroscopic Properties of an Organic-Laden Aerosol. Atmos. Environ., 39(27):4969–4982.
  • McMeeking, G. R., Good, N., Petters, M. D., McFiggans, G., and Coe, H. (2011). Influences on the Fraction of Hydrophobic and Hydrophilic Black Carbon in the Atmosphere, Atmos. Chem. Phys., 11(10):5099–5112, doi:10.5194/acp-11-5099-2011.
  • McMurry, P. H., Litchy, M., Huang, P.-F., Cai, X., Turpin, B. J., Dick, W. D., and Hanson, A. (1996). Elemental Composition and Morphology of Individual Particles Separated by Size and Hygroscopicity with the TDMA. Atmos. Environ., 30(1):101–108, doi:10.1016/1352-2310(95)00235-Q.
  • Mikhailov, E., Vlasenko, S., Niessner, R., and Pöschl, U. (2004). Interaction of Aerosol Particles Composed of Protein and Salts with Water Vapor: Hygroscopic Growth and Microstructural Rearrangement. Atmos. Chem. Phys., 4(2):323–350, doi:10.5194/acp-4-323-2004.
  • Ng, N. L., Canagaratna, M. R., Jimenez, J. L., Zhang, Q., Ulbrich, I. M., and Worsnop, D. R. (2011). Real-Time Methods for Estimating Organic Component Mass Concentrations from Aerosol Mass Spectrometer Data. Environ. Sci. Technol., 45(3):910–916, doi:10.1021/es102951k.
  • Peng, C., Chan, M. N., and Chan, C. K. (2001). The Hygroscopic Properties of Dicarboxylic and Multifunctional Acids: Measurements and UNIFAC Predictions. Environ. Sci. Technol., 35(22):4495–4501.
  • Pitchford, M. L., and McMurry, P. H. (1994). Relationship Between Measured Water Vapor Growth and Chemistry of Atmospheric Aerosol for Grand Canyon, Arizona, in Winter 1990. Atmos. Environ., 28(5):827–839, doi:10.1016/1352-2310(94)90242-9.
  • Stokes, R. H., and Robinson, R. A. (1966). Interactions in Aqueous Nonelectrolyte Solutions. I: Solute-Solvent Equilibria. J. Phys. Chem.-US., 70:2126–2130.
  • Swietlicki, E., Hansson, H.-C., Hameri, K., Svenningsson, B., Massling, A., McFiggans, G., McMurry, P. H., Petaja, T., Tunved, P., Gysel, M., Topping, D., Weingartner, E., Baltensperger, U., Rissler, J., Wiedensohler, A., and Kulmala, M. (2008). Hygroscopic Properties of Submicrometer Atmospheric Aerosol Particles Measured with H-TDMA Instruments in Various Environments—A Review. Tellus B, 60B:432–469.
  • Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez, J. L. (2009). Interpretation of Organic Components from Positive Matrix Factorization of Aerosol Mass Spectrometric Data. Atmos. Chem. Phys., 9(9):2891–2918, doi:10.5194/acp-9-2891-2009.
  • Wang, X., Ye, X., Chen, H., Chen, J., Yang, X., and Gross, D. S. (2014). Online Hygroscopicity and Chemical Measurement of Urban Aerosol in Shanghai, China, Atmos. Environ., 95: 318–326, doi:10.1016/j.atmosenv.2014.06.051.
  • Wise, M. E., Surratt, J. D., Curtis, D. B., Shilling, J. E., and Tolbert, M. A. (2003). Hygroscopic Growth of Ammonium Sulfate/Dicarboxylic Acids. J. Geophys. Res., 108(D20):4638, doi:10.1029/2003JD003775.
  • Yeung, M. C., Lee, B. P., Li, Y. J., and Chan, C. K. (2014). Simultaneous HTDMA and HR-ToF-AMS measurements at the HKUST Supersite in Hong Kong in 2011. J. Geophys. Res. Atmos., 119(16):9864–9883, doi:10.1002/2013JD021146.
  • Zamora, I. R., Tabazadeh, A., Golden, D. M., and Jacobson, M. Z. (2011). Hygroscopic Growth of Common Organic Aerosol Solutes, Including Humic Substances, as Derived from Water Activity Measurements. J. Geophys. Res. Atmos., 116(D23):n/a–n/a, doi:10.1029/2011JD016067.
  • Zdanovskii, A. (1948). New Methods for Calculating Solubilities of Electrolytes in Multicomponent Systems. Zhur. Fiz. Khim., 22:1475–1485.
  • Zelenyuk, A., Imre, D., Han, J.-H., and Oatis, S. (2008). Simultaneous Measurements of Individual Ambient Particle Size, Composition, Effective Density, and Hygroscopicity., Anal. Chem., 80(5):1401–7, doi:10.1021/ac701723v.
  • Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I. M., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., Decarlo, P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R. (2007). Ubiquity and Dominance of Oxygenated Species in Organic Aerosols in Anthropogenically-Influenced Northern Hemisphere Midlatitudes. Geophys. Res. Lett., 34(13):1–6, doi:10.1029/2007GL029979.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.