1,479
Views
14
CrossRef citations to date
0
Altmetric
Articles

Cluster formation mechanisms of titanium dioxide during combustion synthesis: Observation with an APi-TOF

, , , , , , & show all
Pages 1071-1081 | Received 09 Dec 2016, Accepted 10 May 2017, Published online: 02 Jun 2017

References

  • Ahn, K.-H., Park, Y. B. and Park, D.-W. (2003). Kinetic and Mechanistic Study on the Chemical Vapor Deposition of Titanium Dioxide Thin Films by In Situ FTIR using TTIP. Surf. Coat. Technol., 171:198–204.
  • Biswas, P., Wu, C. Y., Zachariah, M. R. and McMillin, B. (1997). Characterization of Iron Oxide-Silica Nanocomposites in Flames .2. Comparison of Discrete-Sectional Model Predictions to Experimental Data. J. Mater. Res., 12:714–723.
  • Buerger, P., Nurkowski, D., Akroyd, J., Mosbach, S. and Kraft, M. (2015). First-principles Thermochemistry for the Thermal Decomposition of Titanium Tetraisopropoxide. J. Phys. Chem. A, 119:8376–8387.
  • Buerger, P., Nurkowski, D., Akroyd, J. and Kraft, M. (2017). A Kinetic Mechanism for the Thermal Decomposition of Titanium Tetraisopropoxide. Proc. Combust. Inst., 36:1019–1027.
  • Debrou, G. B., Goodings, J. M. and Bohme, D. K. (1980). Flame-ion Probe Intermediates Leading to NOx in CH4- O2- N2 Flames. Combust. Flame, 39:1–19.
  • Fang, J. X., Wang, Y., Attoui, M., Chadha, T. S., Ray, J. R., Wang, W. N., Jun, Y. S. and Biswas, P. (2014). Measurement of Sub-2 nm Clusters of Pristine and Composite Metal Oxides During Nanomaterial Synthesis in Flame Aerosol Reactors. Anal. Chem., 86:7523–7529.
  • Fialkov, A. B. (1997). Investigations on Ions in Flames. Prog. Energy Combust. Sci., 23:399–528.
  • Guan, B., Lu, W., Fang, J. and Cole, R. B. (2007). Characterization of Synthesized Titanium Oxide Nanoclusters by MALDI-TOF Mass Spectrometry. J. Am. Soc. Mass. Spectrom., 18:517–524.
  • Hansen, N., Cool, T. A., Westmoreland, P. R. and Kohse-Höinghaus, K. (2009). Recent Contributions of Flame-Sampling Molecular-Beam Mass Spectrometry to a Fundamental Understanding of Combustion Chemistry. Prog. Energy Combust. Sci., 35:168–191.
  • Hu, Y., Jiang, H., Li, Y., Wang, B., Zhang, L., Li, C., Wang, Y., Cohen, T., Jiang, Y. and Biswas, P. (2017). Engineering the Outermost Layers of TiO2 Nanoparticles using in situ Mg Doping in a Flame Aerosol Reactor. AIChE J, 63(3):870–880.
  • Hughey, C. A., Hendrickson, C. L., Rodgers, R. P., Marshall, A. G. and Qian, K. (2001). Kendrick Mass Defect Spectrum: A Compact Visual Analysis for Ultrahigh-Resolution Broadband Mass Spectra. Anal. Chem., 73:4676–4681.
  • Jiang, J., Lee, M.-H. and Biswas, P. (2007). Model for Nanoparticle Charging by Diffusion, Direct Photoionization, and Thermionization Mechanisms. J. Electrostat., 65:209–220.
  • Jones, H. R. and Hayhurst, A. N. (2016). Measurements of the Concentrations of Positive and Negative Ions Along Premixed Fuel-rich Flames of Methane and Oxygen. Combust. Flame, 166:86–97.
  • Junninen, H., Ehn, M., Petäjä, T., Luosujärvi, L., Kotiaho, T., Kostiainen, R., Rohner, U., Gonin, M., Fuhrer, K. and Kulmala, M. (2010). A High-Resolution Mass Spectrometer to Measure Atmospheric Ion Composition. Atmos. Meas. Tech., 3:1039–1053.
  • Kluge, S., Wiggers, H. and Schulz, C. (2016). Mass Spectrometric Analysis of Clusters and Nanoparticles During the Gas-Phase Synthesis of Tungsten Oxide. Proc. Combust. Inst., 36(1):1037–1044.
  • Kulmala, M., Kontkanen, J., Junninen, H., Lehtipalo, K., Manninen, H. E., Nieminen, T., Petäjä, T., Sipilä, M., Schobesberger, S. and Rantala, P. (2013). Direct Observations of Atmospheric Aerosol Nucleation. Science, 339:943–946.
  • Larriba, C. and Hogan, C. J. Jr. (2013). Ion Mobilities in Diatomic Gases: Measurement Versus Prediction with Non-Specular Scattering Models. J. Phys. Chem. A, 117:3887–3901.
  • Larriba, C., Hogan, C. J. Jr., Attoui, M., Borrajo, R., Garcia, J. F. and de la Mora, J. F. (2011). The Mobility–volume Relationship Below 3.0 nm Examined by Tandem Mobility–Mass Measurement. Aerosol Sci. Technol., 45:453–467.
  • Li, S., Ren, Y., Biswas, P. and Stephen, D. T. (2016). Flame Aerosol Synthesis of Nanostructured Materials and Functional Devices: Processing, Modeling, and Diagnostics. Prog. Energy Combust. Sci., 55:1–59.
  • Liu, P., Arnold, I. J., Wang, Y., Yu, Y., Fang, J., Biswas, P. and Chakrabarty, R. K. (2015). Synthesis of Titanium Dioxide Aerosol Gels in a Buoyancy-Opposed Flame Reactor. Aerosol Sci. Technol., 49:1232–1241.
  • Liu, C., Li, S., Zong, Y., Yao, Q. and Stephen, D. T. (2016). Laser-Based Investigation of the Transition from Droplets to Nanoparticles in Flame-Assisted Spray Synthesis of Functional Nanoparticles. Proc. Combust. Inst., 36(1):1109–1117.
  • McMillin, B. K., Biswas, P. and Zachariah, M. R. (1996). In situ Characterization of Vapor Phase Growth of Iron Oxide-Silica Nanocomposites .1. 2-D Planar Laser-Induced Fluorescence and Mie Imaging. J. Mater. Res., 11:1552–1561.
  • Nicol, D. G., Steele, R. C., Marinov, N. M. and Malte, P. C. (1995). The Importance of the Nitrous Oxide Pathway to NOx in Lean-Premixed Combustion. J. Eng. Gas Turbines Power, 117:100–111.
  • Nie, Y., Wang, Y. and Biswas, P. (2017). Mobility and Bipolar Diffusion Charging Characteristics of Crumpled Reduced Graphene Oxide Nanoparticles Synthesized in a Furnace Aerosol Reactor. J. Phys. Chem. C., 121(19):10529–10537.
  • Okuyama, K., Ushio, R., Kousaka, Y., Flagan, R. C. and Seinfeld, J. H. (1990). Particle Generation in a Chemical Vapor Deposition Process with Seed Particles. AIChE J., 36:409–419.
  • Park, D. G., Chung, S. H. and Cha, M. S. (2016). Bidirectional Ionic Wind in Nonpremixed Counterflow Flames with DC Electric Fields. Combust. Flame, 168:138–146.
  • Pratsinis, S. E. (1998). Flame Aerosol Synthesis of Ceramic Powders. Prog. Energy Combust. Sci., 24:197–219.
  • Ren, Y., Zhang, Y., Li, S. and Law, C. K. (2015). Doping Mechanism of Vanadia/Titania Nanoparticles in Flame Synthesis by a Novel Optical Spectroscopy Technique. Proc. Combust. Inst., 35:2283–2289.
  • Ren, Y., Li, S., Cui, W., Zhang, Y. and Ma, L. (2017). Low-frequency AC Electric Field Induced Thermoacoustic Oscillation of a Premixed Stagnation Flame. Combust. Flame, 176:479–488.
  • Schobesberger, S., Junninen, H., Bianchi, F., Lönn, G., Ehn, M., Lehtipalo, K., Dommen, J., Ehrhart, S., Ortega, I. K. and Franchin, A. (2013). Molecular Understanding of Atmospheric Particle Formation from Sulfuric Acid and Large Oxidized Organic Molecules. PNAS, 110:17223–17228.
  • Shmakov, A. G., Korobeinichev, O. P., Knyazkov, D. A., Paletsky, A. A., Maksutov, R. A., Gerasimov, I. E., Bolshova, T. A., Kiselev, V. G. and Gritsan, N. P. (2013). Combustion Chemistry of Ti(OC3H7)4 in Premixed Flat Burner-Stabilized H2/O2/Ar Flame at 1 atm. Proc. Combust. Inst., 34:1143–1149.
  • Siefering, K. and Griffin, G. (1990). Growth Kinetics of CVD TiO2: Influence of Carrier Gas. J. Electrochem. Soc., 137:1206–1208.
  • Swihart, M. T. (2003). Vapor-Phase Synthesis of Nanoparticles. Curr. Opin. Colloid Interface Sci., 8:127–133.
  • Tsantilis, S., Kammler, H. and Pratsinis, S. (2002). Population Balance Modeling of Flame Synthesis of Titania Nanoparticles. Chem. Eng. Sci., 57:2139–2156.
  • Ulrich, G. D. (1971). Theory of Particle Formation and Growth in Oxide Synthesis Flames. Combust. Sci. Technol., 4:47–57.
  • Wang, Y., Fang, J., Attoui, M., Chadha, T. S., Wang, W.-N. and Biswas, P. (2014). Application of Half Mini DMA for sub 2 nm Particle Size Distribution Measurement in an Electrospray and a Flame Aerosol Reactor. J. Aerosol Sci., 71:52–64.
  • Wang, Y., Kangasluoma, J., Attoui, M., Fang, J., Junninen, H., Kulmala, M., Petäjä, T. and Biswas, P. (2017a). Observation of Incipient Particle Formation During Flame Synthesis by Tandem Differential Mobility Analysis-Mass Spectrometry (DMA-MS). Proc. Combust. Inst., 36(1):745–752.
  • Wang, Y., Kangasluoma, J., Attoui, M., Fang, J., Junninen, H., Kulmala, M., Petäjä, T. and Biswas, P. (2017b). The High Charge Fraction of Flame-Generated Particles in the Size Range Below 3 nm Measured by Enhanced Particle Detectors. Combust. Flame, 176:72–80.
  • Wang, Y., Liu, P., Fang, J., Wang, W.-N. and Biswas, P. (2015). Kinetics of sub-2 nm TiO2 Particle Formation in an Aerosol Reactor During Thermal Decomposition of Titanium Tetraisopropoxide. J. Nanopart. Res., 17:1–13.
  • Wang, Y., Sharma, G., Koh, C., Kumar, V., Chakrabarty, R. K. and Biswas, P. (2017c). Influence of Flame-Generated Ions on the Simultaneous Charging and Coagulation of Nanoparticles During Combustion. Aerosol Sci. Technol., 51(7):833–844.
  • Xiong, G., Kulkarni, A., Dong, Z., Li, S. and Stephen, D. T. (2017a). Electric-field-Assisted Stagnation-Swirl-Flame Synthesis of Porous Nanostructured Titanium-Dioxide Films. Proc. Combust. Inst., 36:1065–1075.
  • Xiong, Y., Chung, S. H. and Cha, M. S. (2017b). Instability and Electrical Response of Small Laminar Coflow Diffusion Flames under AC Electric Fields: Toroidal Vortex Formation and Oscillating and Spinning Flames. Proc. Combust. Inst., 36:1621–1628.
  • Zhang, Y. Y., Xiong, G., Li, S. Q., Dong, Z. Z., Buckley, S. G. and Tse, S. D. (2013). Novel Low-Intensity Phase-Selective Laser-Induced Breakdown Spectroscopy of TiO2 Nanoparticle Aerosols During Flame Synthesis. Combust. Flame, 160:725–733.
  • Zhao, B., Yang, Z., Wang, J., Johnston, M. V. and Wang, H. (2003). Analysis of Soot Nanoparticles in a Laminar Premixed Ethylene Flame by Scanning Mobility Particle Sizer. Aerosol Sci. Technol., 37:611–620.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.