746
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Knudsen transition effects on the thermophoretic properties of fractal-like aggregates: Implications for thermophoretic sampling of high-pressure flames

&
Pages 1262-1274 | Received 17 Apr 2017, Accepted 01 Jun 2017, Published online: 01 Aug 2017

References

  • Allen, M. D., and Raabe, O. G. (1982). Re-evaluation of Millikan's Oil Drop Data for the Motion of Small Particles in Air. J. Aerosol Sci. 10:537–547.
  • Dahneke, B. E. (1973a). Slip Correction Factors for Nonspherical Bodies—I Introduction and Continuum flow. J. Aerosol Sci., 4:139–145.
  • Dahneke, B. E. (1973b). Slip Correction Factors for Nonspherical Bodies—II Free Molecule Flow. J. Aerosol Sci., 4:147–161.
  • Dahneke, B. E. (1973c). Slip Correction Factors for Nonspherical Bodies—III the Form of the General Law. J. Aerosol Sci., 4:162.
  • Dobbins, R. A., and Megaridis, C. M. (1987). Morphology of Flame-Generated Soot as Determined by Thermophoretic Sampling. Langmuir, 3:254–259.
  • Gomez, A., and Rosner, D. E. (1993). Thermophoretic Effects on Particles in Counterflow Laminar Diffusion Flames. Comb. Sci. Tech. 89:335–362.
  • Leschowski, M., Dreier, T., and Shultz, C. (2014). An Automated Thermophoretic Soot Sampling Device for Laboratory-Scale High-Pressure Flames. Rev. Sci. Instrum., 85, Paper 045103.
  • Li, Z., and Wang, H. (2005). Gas-Nanoparticle Scattering: A Molecular View of Momentum Accommodation Function. Phys. Rev. Lett., 95:014502.
  • Li, Z., and Wang, H. (2004). Thermophoretic Force and Velocity of Nanoparticles in the Free Molecule Regime. Phys. Rev. E, 70:021205.
  • Mackowski, D. W. (2006). Monte Carlo Simulation of Hydrodynamic Drag and Thermophoresis of Fractal Aggregates of Spheres in the Free-Molecule Flow Regime. J. Aerosol Sci., 37:242–259.
  • McEnally, C. S., Koylu, U. O., Pfefferle, L. D., and Rosner, D. E. (1997). Soot Volume Fraction and Temperature Measurements in Laminar Nonpremixed Flames Using Thermocouples. Combust. Flame, 109:701–720.
  • Meakin, P., Donn, B., and Mulholland, G. W. (1989). Collisions Between Point Masses and Fractal Aggregates. Langmuir, 5:510–518.
  • Melas, A. D., Isella, L., Konstandopoulos, A. G., and Drossinos, Y. (2014). Friction Coefficient and Mobility Radius of Fractal-Like Aggregates in the Transition Regime. Aerosol Sci. Technol., 48:1320–1331.
  • Meyer, M. E., Mulholland, G. W., Bryg, V., Urban, D. L., Yuan, Z., Ruff, G. A., Cleary, T., and Yang, J. (2015). Smoke Characterization and Feasibility of the Moment Method for Spacecraft Fire Detection. Aerosol Sci. Tech., 49:299–309.
  • Mulholland, G. W., Meyer, M. E., Urban, D. L., Yuan, Z., Ruff, G. A., Bryg, V., Cleary, T., and Yang, J. (2015). Pyrolysis Smoke Generated Under Low-Gravity Conditions. Aerosol Sci. Tech., 49:310–321.
  • Rosner, D. E. (2000). Transport Processes in Chemically Reacting Flow Systems, DOVER, Mineola, New York.
  • Rosner, D. E., and Arias-Zugasti, M. (2011). Novel Features of Aerosol Coagulation in Non-Isothermal Environments. Ind. Eng. Chem.-Res., 50:8932–8940.
  • Rosner, D. E., Mackowski, D. W., and Garcia-Ybarra, P. (1991). Size- and Structure-Insensitivity of the Thermophoretic Transport of Aggregated “Soot” Particles in Gases. Comb. Sci. Tech., 80(1-3):87–101.
  • Rosner, D. E., and Papadopoulos, D. H. (1996). Jump, Slip, and Creep Boundary Conditions at Nonequilibrium Gas/Solid Interfaces. Ind. Eng. Chem., 35:3210–3222.
  • Rosner, D. E., and Tandon, P. (1994). Prediction and Correlation of Accessible Area of Large Multi-Particle Aggregates. AIChE J., 40:1167–1182.
  • Rosner, D. E., and Tandon, P. (2017). Aggregation and Rarefaction Effects on Particle Mass Deposition Rates by Convective-Diffusion, Thermophoresis or Inertial Impaction; Consequences of ‘Momentum Shielding’. Aerosol Sci. Tech., in review.
  • Sorensen, C. M. (2011). The Mobility of Fractal Aggregates: A Review. Aerosol Sci. Technol., 45:765–779.
  • Talbot, L., Cheng, R. K., Schefer, R. W., and Willis, D. R. (1980). Thermophoresis of Particles in a Heated Boundary Layer. J. Fluid Mechs., 80:737–758.
  • Tandon, P., and Rosner, D. E. (1995). Translational Brownian Diffusion Coefficient of Large (multi-particle) Suspended Aggregates. Ind. Eng. Chem., 34:3265–3277.
  • Tandon, P., Terrell, J. P., Fu, X., and Rovelstad, A. (2003). Estimation of Particle Volume Fraction, Mass Fraction and Number Density in Thermophoretic Deposition Systems. Int. J. Heat Mass Transfer, 46:3201–3209.
  • Thajudeen, T., Jeon, S., and Hogan, C. J. (2015). The Mobilities of Flame Synthesized Aggregates/Agglomerates in the Transition Regime. J. Aerosol Sci., 80:45–57.
  • Vargas, A. M., and Gülder, Ö. L. (2016). A Multi-Probe Thermophoretic Soot Sampling System for High-Pressure Diffusion Flames. Rev. Sci. Instrum., 87(5):055101.
  • Vargas, A. M., and Gülder, Ö. L. (2016). Pressure Dependence of Primary Soot Particle Size Determined Using Thermophoretic Sampling in Laminar Methane-Air Diffusion Flames. Proceedings of Combustion Institute, in press, https://doi.org/10.1016/jproci2016.05.023.
  • Young, J. B. (2011). Thermophoresis of a Spherical Particle: Reassessment, Clarification, and New Analysis. Aerosol Sci. Tech., 45:927–948.
  • Zhang, C., Thajudeen, T., Larriba, C., Schwartzentruber, T. E., and Hogan, C. J. (2012). Determination of the Scalar Friction Factor for Nonspherical Particles and Aggregates Across the Entire Knudsen Number Range by Direct Simulation Monte Carlo (DSMC). Aerosol Sci. Tech., 46:1065–1078.
  • Zurita-Gotor, M. (2006). Size- and Structure-Independence of the Thermophoretic Transport of an Aerosol Particle for Specular Boundary Conditions in the Free Molecule Regime. J. Aerosol Sci., 37:283–291.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.