3,003
Views
63
CrossRef citations to date
0
Altmetric
Laser-Induced Incandescence for Particle Measurements: Knowledge Gaps, Measurement Artifacts, and New Approaches

Evolution of maturity levels of the particle surface and bulk during soot growth and oxidation in a flame

, , , &
Pages 1333-1344 | Received 13 Jan 2017, Accepted 28 Jun 2017, Published online: 01 Aug 2017

References

  • Bambha, R. P., Dansson, M. A., Schrader, P. E., and Michelsen, H. A. (2013). Effects of Volatile Coatings on the Laser-Induced Incandescence of Soot. Appl. Phys. B, 112:343–358.
  • Batten, C. E. (1985). Spectral Optical Constants of Soots from Polarized Angular Reflectance Measurements. Appl. Opt., 24:1193–1199.
  • Bejaoui, S., Lemaire, R., Desgroux, P., and Therssen, E. (2014). Experimental Study of the E (m, λ)/E (m, 1064) Ratio as a Function of Wavelength, Fuel Type, Height Above the Burner and Temperature. Appl. Phys. B, 116:313–323.
  • Bescond, A., Yon, J., Ouf, F.-X., Rozé, C., Coppalle, A., Parent, P., Ferry, D., and Laffon, C. (2016). Soot Optical Properties Determined by Analyzing Extinction Spectra in the Visible Near-UV: Toward an Optical Speciation According to Constituents and Structure. J. Aerosol Sci., 101:118–132.
  • Bladh, H., Olofsson, N.-E., Mouton, T., Simonsson, J., Mercier, X., Faccinetto, A., Bengtsson, P.-E., and Desgroux, P. (2015). Probing the Smallest Soot Particles in Low-Sooting Premixed Flames Using Laser-Induced Incandescence. Proc. Combust. Inst., 35:1843–1850.
  • Cain, J. P., Gassman, P. L., Wang, H., and Laskin, A. (2010). Micro-FTIR Study of Soot Chemical Composition—Evidence of Aliphatic Hydrocarbons on Nascent Soot Surfaces. Phys. Chem. Chem. Phys., 12:5206–5218.
  • Campbell, M., Bohlin, G., Schrader, P., Bambha, R., Kliewer, C., Johansson, K., and Michelsen, H. (2016). Design and Characterization of a Linear Hencken-Type Burner. Rev. Sci. Instrum., 87:115114.
  • Cléon, G., Amodeo, T., Faccinetto, A., and Desgroux, P. (2011). Laser Induced Incandescence Determination of the Ratio of the Soot Absorption Functions at 532 nm and 1064 nm in the Nucleation Zone of a Low Pressure Premixed Sooting Flame. Appl. Phys. B, 104:297–305.
  • D'Alessio, A., Beretta, F., and Venitozzi, C. (1972). Optical Investigations of Soot Forming Methane-Oxygen Flames. Combust. Sci. Technol., 5:263–272.
  • Dalzell, W. H., and Sarofim, A. F. (1969). Optical Constants of Soot and Their Application to Heat-Flux Calculations. J. Heat Transfer, 91:100–104.
  • di Stasio, S., Mitchell, J. B. A., LeGarrec, J. L., Biennier, L., and Wulff, M. (2006). Synchrotron SAXS in Situ Identification of Three Different Size Modes for Soot Nanoparticles in a Diffusion Flame. Carbon, 44:1267–1279.
  • DOE. (2006). Report of the Basic Energy Sciences Workshop on Basic Research Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels, Office of Science, U.S. Department of Energy, Germantown, MD.
  • Foster, P. J., and Howarth, C. R. (1968). Optical Constants of Carbons and Coals in the Infrared. Carbon, 6:719–729.
  • Goulay, F., Schrader, P. E., López-Yglesias, X., and Michelsen, H. A. (2013). A Dataset for Validation of Models of Laser-Induced Incandescence from Soot: Temporal Profiles of LII Signal and Particle Temperature. Appl. Phys. B, 112:287–306.
  • Goulay, F., Schrader, P. E., and Michelsen, H. A. (2009). The Effects of Pulsed Laser Injection Seeding and Triggering on the Temporal Behavior and Magnitude of Laser-Induced Incandescence of Soot. Appl. Phys. B, 96:613–621.
  • Grotheer, H.-H., Wolf, K., and Hoffmann, K. (2011). Photoionization Mass Spectrometry for the Investigation Of combustion Generated Nascent Nanoparticles and Their Relation To laser Induced Incandescence. Appl. Phys. B, 104:367–383.
  • Habib, Z. G., and Vervisch, P. (1988). On the Refractive Index of Soot at Flame Temperature. Combust. Sci. Technol., 59:261–274.
  • Hopkins, R. J., Lewis, K., Desyaterik, Y., Wang, Z., Tivanski, A. V., Arnott, W. P., Laskin, A., and Gilles, M. K. (2007). Correlations Between Optical, Chemical, and Physical Properties of Biomass Burn Aerosols. Geophys. Res. Lett., 34:L18806.
  • Jaramillo, I. C., Gaddam, C. K., Vander Wal, R. L., Huang, C.-H., Levinthal, J. D., and Lighty, J. S. (2014). Soot Oxidation Kinetics Under Pressurized Conditions. Combust. Flame, 161:2951–2965.
  • Johansson, K. O., Dillstrom, T., Monti, M., El Gabaly, F., Campbell, M. F., Schrader, P. E., Popolan-Vaida, D. M., Richards-Henderson, N. K., Wilson, K. R., and Violi, A. (2016). Formation and Emission of Large Furans and Oxygenated Hydrocarbons from Flames. Proc. Natl. Acad. Sci. U.S.A., 113:8374–8379.
  • Kim, J., Bauer, H., Dobovicnik, T., Hitzenberger, R., Lottin, D., Ferry, D., and Petzold, A. (2015). Assessing Optical Properties and Refractive Index of Combustion Aerosol Particles Through Combined Experimental and Modeling Studies. Aerosol Sci. Technol., 49:340–350.
  • Leschowski, M., Thomson, K., Snelling, D., Schulz, C., and Smallwood, G. (2015). Combination of LII and Extinction Measurements for Determination of Soot Volume Fraction and Estimation of Soot Maturity in Non-Premixed Laminar Flames. Appl. Phys. B, 119:685–696.
  • López-Yglesias, X., Schrader, P. E., and Michelsen, H. A. (2014). Soot Maturity and Absorption Cross Sections. J. Aerosol Sci., 75:43–64.
  • McKinnon, J. T., Meyer, E., and Howard, J. B. (1996). Infrared Analysis of Flame Generated PAH Samples. Combust. Flame, 105:161–166.
  • Michelsen, H. (2017). Probing Soot Formation, Chemical and Physical Evolution, and Oxidation: A Review of in situ Diagnostic Techniques and Needs. Proc. Combust. Inst., 36:717–735.
  • Michelsen, H., Schulz, C., Smallwood, G., and Will, S. (2015). Laser-Induced Incandescence: Particulate Diagnostics for Combustion, Atmospheric, and Industrial Applications. Prog. Energy Combust. Sci., 51:2–48.
  • Michelsen, H. A. (2003). Understanding and Predicting the Temporal Response of Laser-Induced Incandescence from Carbonaceous Particles. J. Chem. Phys., 118:7012–7045.
  • Michelsen, H. A., Schrader, P. E., and Goulay, F. (2010). Wavelength and Temperature Dependences of the Absorption and Scattering Cross Sections of Soot. Carbon, 48:2175–2191.
  • Michelsen, H. A., Schrader, P. E., and Goulay, F. (2012). Erratum to “Wavelength and Temperature Dependences of the Absorption and Scattering Cross Sections of Soot” [Carbon 48 (2010) 2175–2191]. Carbon, 50:740.
  • Migliorini, F., De Iuliis, S., Maffi, S., and Zizak, G. (2015). Saturation Curves of Two-Color Laser-Induced Incandescence Measurements for the Investigation of Soot Optical Properties. Appl. Phys. B, 120:417–427.
  • Migliorini, F., Thomson, K., and Smallwood, G. (2011). Investigation of Optical Properties of Aging Soot. Appl. Phys. B, 104:273–283.
  • Millikan, R. C. (1961). Optical Properties of Soot. J. Opt. Soc. America, 51:698–699.
  • Minutolo, P., Gambi, G., and D'alessio, A. (1996). The Optical Band Gap Model in the Interpretation of the UV-Visible Absorption Spectra of Rich Premixed Flames, in Symposium (International) on Combustion, Elsevier, pp. 951–957.
  • Mouton, T., Mercier, X., Wartel, M., Lamoureux, N., and Desgroux, P. (2013). Laser-Induced Incandescence Technique to Identify Soot Nucleation and Very Small Particles in Low-Pressure Methane Flames. Appl. Phys. B, 112:369–379.
  • Müller, J.-O., Su, D. S., Wild, U., and Schlögl, R. (2007). Bulk and Surface Structural Investigations of Diesel Engine Soot and Carbon Black. Phys. Chem. Chem. Phys., 9:4018–4025.
  • Öktem, B., Tolocka, M. P., Zhao, B., Wang, H., and Johnston, M. V. (2005). Chemical Species Associated with the Early Stage of Soot Growth in a Laminar Premixed Ethylene–Oxygen–Argon Flame. Combust. Flame, 142:364–373.
  • Olofsson, N.-E., Simonsson, J., Török, S., Bladh, H., and Bengtsson, P.-E. (2015). Evolution of Properties of Aging Soot in Premixed Flat Flames Studied by Laser-Induced Incandescence and Elastic Light Scattering. Appl. Phys. B, 119:669–683.
  • Ouf, F.-X., Parent, P., Laffon, C., Marhaba, I., Ferry, D., Marcillaud, B., Antonsson, E., Benkoula, S., Liu, X.-J., Nicolas, C., Robert, E., Patanen, M., Barreda, F.-A., Sublemontier, O., Coppalle, A., Yon, J., Miserque, F., Mostefaoui, T. A., Regier, T. Z., Mitchell, J. B. A., and Miron, C. (2016). First in-Flight Synchrotron X-Ray Absorption and Photoemission Study of Carbon Soot Nanoparticles. Sci. Rep., 6:36495.
  • Pokhrel, R. P., Wagner, N. L., Langridge, J. M., Lack, D. A., Jayarathne, T., Stone, E. A., Stockwell, C. E., Yokelson, R. J., and Murphy, S. M. (2016). Parameterization of Single-Scattering Albedo (SSA) and Absorption Ångström Exponent (AAE) with EC/OC for Aerosol Emissions from Biomass Burning. Atmos. Chem. Phys., 16:9549–9561.
  • Richter, H., and Howard, J. B. (2000). Formation of Polycyclic Aromatic Hydrocarbons and Their Growth to Soot—A Review of Chemical Reaction Pathways. Prog. Energy Combust. Sci., 26:565–608.
  • Russo, C., Tregrossi, A., and Ciajolo, A. (2015). Dehydrogenation and Growth of Soot in Premixed Flames. Proc. Combust. Inst., 35:1803–1809.
  • Santamaria, A., Mondragón, F., Molina, A., Marsh, N. D., Eddings, E. G., and Sarofim, A. F. (2006). FT-IR and 1H NMR Characterization of the Products of an Ethylene Inverse Diffusion Flame. Combust. Flame, 146:52–62.
  • Santamaria, A., Yang, N., Eddings, E., and Mondragon, F. (2010). Chemical and Morphological Characterization of Soot and Soot Precursors Generated in an Inverse Diffusion Flame with Aromatic and Aliphatic Fuels. Combust. Flame, 157:33–42.
  • Schnaiter, M., Gimmler, M., Llamas, I., Linke, C., Jäger, C., and Mutschke, H. (2006). Strong Spectral Dependence of Light Absorption by Organic Carbon Particles Formed by Propane Combustion. Atmos. Chem. Phys., 6:2981–2990.
  • Sediako, A. D., Soong, C., Howe, J. Y., Kholghy, M. R., and Thomson, M. J. (2017). Real-time observation of soot aggregate oxidation in an Environmental Transmission Electron Microscope. Proc. Combust. Inst., 36:841–851.
  • Siddall, R. G., and McGrath, I. A. (1963). The Emissivity of Luminous Flames. Proc. Combust. Inst., 9:102–110.
  • Simonsson, J., Olofsson, N.-E., Török, S., Bengtsson, P.-E., and Bladh, H. (2015). Wavelength Dependence of Extinction in Sooting Flat Premixed Flames in the Visible and Near-Infrared Regimes. Appl. Phys. B, 119:657–667.
  • Smith, M., Scudiero, L., Espinal, J., McEwen, J.-S., and Garcia-Perez, M. (2016). Improving the Deconvolution and Interpretation of XPS Spectra from Chars by ab initio Calculations. Carbon 110:155–171.
  • Spence, G. B. (1963). Research and Development of Advanced Graphite Materials. Volume 41: Survey and Analytical Representation of the Measurements of the Specific Heat of Graphite. Technical Report No WADD-TR-61-72. Defense Documentation Center, Alexandria, VA.
  • Su, Y., Sipin, M. F., Prather, K. A., Gelein, R. M., Lunts, A., and Oberdorster, G. (2005). ATOFMS Characterization of Individual Model Aerosol Particles Used for Exposure Studies. Aerosol Sci. Technol., 39:400–407.
  • Tanuma, S., Powell, C. J., and Penn, D. R. (2011). Calculations of Electron Inelastic Mean Free Paths. IX. Data for 41 Elemental Solids Over the 50 eV to 30 keV Range. Surf. Interface Anal., 43:689–713.
  • Therssen, E., Bouvier, Y., Schoemaecker-Moreau, C., Mercier, X., Desgroux, P., Ziskind, M., and Focsa, C. (2007). Determination of the Ratio of Soot Refractive Index Function E (m) at the Two Wavelengths 532 and 1064 nm by Laser Induced Incandescence. Appl. Phys. B, 89:417–427.
  • Vander Wal, R. L., Yezerets, A., Currier, N. W., Kim, D. H., and Wang, C. M. (2007). HRTEM Study of Diesel Soot Collected from Diesel Particulate Filters. Carbon, 45:70–77.
  • Wang, H. (2011). Formation of Nascent Soot and Other Condensed-Phase Materials in Flames. Proc. Combust. Inst., 33:41–67.
  • Wentzel, M., Gorzawski, H., Naumann, K.-H., Saathoff, H., and Weinbruch, S. (2003). Transmission Electron Microscopical and Aerosol Dynamical Characterization of Soot Aerosols. J. Aerosol Sci., 34:1347–1370.
  • Yapp, E. K. Y., Patterson, R. I. A., Akroyd, J., Mosbach, S., Adkins, E. M., Miller, J. H., and Kraft, M. (2016). Numerical Simulation and Parametric Sensitivity Study of Optical Band Gap in a Laminar Co-Flow Ethylene Diffusion Flame. Combust. Flame, 167:320–334.
  • Yon, J., Lemaire, R., Therssen, E., Desgroux, P., Coppalle, A., and Ren, K. (2011). Examination of Wavelength Dependent Soot Optical Properties of Diesel and Diesel/Rapeseed Methyl Ester Mixture by Extinction Spectra Analysis and LII Measurements. Appl. Phys. B, 104:253–271.