2,784
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Analytical expression for the rotational friction coefficient of DLCA aggregates over the entire Knudsen regime

, &
Pages 209-221 | Received 03 Aug 2017, Accepted 05 Oct 2017, Published online: 16 Nov 2017

References

  • Bentz, J. A., Tompson, R. V., and Loyalka, S. K. (2001). Measurements of Viscosity, Velocity Slip Coefficients, and Tangential Momentum Accommodation Coefficients Using a Modified Spinning Rotor Gauge. J. Vac. Sci. Technol. A: Vac. Surf. Films, 19(1):317–324.
  • Bernal, J. M. G., and Garcia de la Torre, J. (1980). Transport Properties and Hydrodynamic Centers of Rigid Macromolecules with Arbitrary Shapes. Biopolymers, 19(4):751–766.
  • Bhatnagar, P. L., Gross, E. P., and Krook, M. (1954). A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems. Phys. Rev., 94(3):511–525.
  • Brenner, H. (1967). Coupling Between the Translational and Rotational Brownian Motions of Rigid Particles of Arbitrary Shape: II. General Theory. J. Colloid Interface Sci., 23(3):407–436.
  • Carrasco, B., and Garcia de la Torre, J. (1999). Improved Hydrodynamic Interaction in Macromolecular Bead Models. J. Chem. Phys., 111(10):4817–4826.
  • Chan, P., and Dahneke, B. (1981). Free-Molecule Drag on Straight Chains of Uniform Spheres. J. Appl. Phys., 52(5):3106–3110.
  • Cheng, M. T., Xie, G. W., Yang, M., and Shaw, D. (1991). Experimental Characterization of Chain-aggregate Aerosol by Electrooptic Scattering. Aerosol Sci. Technol., 14(1):74–81.
  • Colbeck, I., Atkinson, B., and Johar, Y. (1997). The Morphology and Optical Properties of Soot Produced by Different Fuels. J. Aerosol Sci., 28(5):715–723.
  • Corson, J., Mulholland, G. W., and Zachariah, M. R. (2017a). Friction Factor for Aerosol Fractal Aggregates ove the Entire Knudsen Range. Phys. Rev. E, 95(1):013103.
  • Corson, J., Mulholland, G. W., and Zachariah, M. R. (2017b). Analytical Expression for the Friction Coefficient of DLCA Aggregates based on Extended Kirkwood–Riseman Theory. Aerosol Sci. Technol., 51(6):766–777.
  • Corson, J., Mulholland, G. W., and Zachariah, M. R. (2017c). Calculating the Rotational Friction Coefficient of Fractal Aerosol Particles in the Transition Regime using Extended Kirkwood-Riseman Theory. Phys. Rev. E, 96(1):013110.
  • Dahneke, B. E. (1973). Slip Correction Factors for Nonspherical Bodies—III The Form of the General Law. J. Aerosol Sci., 4(2):163–170.
  • Epstein, P. S. (1924). On the Resistance Experienced by Spheres in Their Motion Through Gases. Phys. Rev., 23(6):710–733.
  • Garcia de la Torre, J., del Rio Echenique, G., and Ortega, A. (2007). Improved Calculation of Rotational Diffusion and Intrinsic Viscosity of Bead Models for Macromolecules and Nanoparticles. J. Phys. Chem. B, 111(5):955–961.
  • Garcia de la Torre, J., and Rodes, V. (1983). Effects from Bead Size and Hydrodynamic Interactions on the Translational and Rotational Coefficients of Macromolecular Bead Models. J. Chem. Phys., 79(5):2454–2460.
  • Halbritter, J. (1974). Torque on a Rotating Ellipsoid in a Rarefied Gas. Zeitschrift fur Naturforschung A, 29(12):1717–1722.
  • Happel, J., and Brenner, H. (1965). Low Reynolds number Hydrodynamics: with Special Applications to Particulate Media. Prentice Hall, s.l.
  • Heinson, W. R., Pierce, F., Sorensen, C. M., and Chakrabarti, A. (2014). Crossover from Ballistic to Epstein Diffusion in the Free-molecular Regime. Aerosol Sci. Technol., 48(7):738–746.
  • Kirkwood, J. G., and Riseman, J. (1948). The Intrinsic Viscosities and Diffusion Constants of Flexible Macromolecules in Solution. J. Chem. Phys., 16(6):565–573.
  • Koylu, U. O., and Faeth, G. M. (1992). Structure of Overfire Soot in Buoyant Turbulent Diffusion Flames at Long Residence Times. Combust. Flame, 89(2):140–156.
  • Larriba, C., and Hogan, C. J. Jr. (2013). Ion Mobilities in Diatomic Gases: Measurement Versus Prediction with Non-specular Scattering Models. J. Phys. Chem. A, 117(19):3887–3901.
  • Law, W. S., and Loyalka, S. K. (1986). Motion of a Sphere in a Rarefied Gas. II. Role of Temperature Variation in the Knudsen Layer. Phys. Fluids (1958–1988), 29(11):3886–3888.
  • Lea, K. C., and Loyalka, S. K. (1982). Motion of a Sphere in a Rarefied Gas. Phys. Fluids, 25(9):1550–1557.
  • Li, M., Mulholland, G. W., and Zachariah, M. R. (2012). The Effect of Orientation on the Mobility and dynamic Shape Factor of Charged Axially Symmetric Particles in an Electric Field. Aerosol Sci. Technol., 46(9):1035–1044.
  • Li, M., Mulholland, G. W., and Zachariah, M. R. (2014). Rotational Diffusion Coefficient (or Rotational Mobility) of a Nanorod in the Free-molecular Regime. Aerosol Sci. Technol., 48(2):139–141.
  • Li, M., Mulholland, G. W., and Zachariah, M. R. (2014). Understanding the Mobility of Nonspherical Particles in the Free Molecular Regime. Phys. Rev. E, 89(2):022112.
  • Li, M., Mulholland, G. W., and Zachariah, M. R. (2016). The Effect of Alignment on the Electric Mobility of Soot. Aerosol Sci. Technol., 50(10):1003–1016.
  • Loyalka, S. K. (1992). Motion of a Sphere in a Gas: Numerical Solution of the Linearized Boltzmann Equation. Phys. Fluids A: Fluid Dyn., 4(5):1049–1056.
  • Mackowski, D. W. (2006). Monte Carlo Simulation of Hydrodynamic Drag and Thermophoresis of Fractal Aggregates of Spheres in the Free-molecule Flow Regime. J. Aerosol Sci., 37(3):242–259.
  • Meakin, P., Chen, Z.-Y., and Deutch, J. M. (1985). The Translational Friction Coefficient and Time Dependent Cluster Size Distribution of Three Dimensional Cluster–Cluster Aggregation. J. Chem. Phys., 82(8):3786–3789.
  • Melas, A. D., Isella, L., Konstandopoulos, A. G., and Drossinos, Y. (2015). A Methodology to Calculate the Friction Coefficient in the Transition Regime: Application to Straight Chains. J. Aerosol Sci., 82:40–50.
  • Mountain, R. D., Mulholland, G. W., and Baum, H. (1986). Simulation of Aerosol Agglomeration in the Free Molecular and Continuum Flow Regimes. J. Colloid Interface Sci., 114(1):67–81.
  • Mulholland, G. W., Hagwood, C. R., Li, M., and Zachariah, M. R. (2016). Effect of Particle Rotation on the Drift Velocity for Nonspherical Aerosol Particles. J. Aerosol Sci., 101:65–76.
  • Ortega, A., and Garcia de la Torre, J. (2003). Hydrodynamic Properties of Rodlike and Disklike Particles in Dilute Solution. J. Chem. Phys., 119(18):9914–9919.
  • Rotne, J., and Prager, S. (1969). Variational Treatment of Hydrodynamic Interaction in Polymers. J. Chem. Phys., 50(11):4831–4837.
  • Shrivastav, V., Nahin, M., Hogan, C. J., and Larriba-Andaluz, C. (2017). Benchmark Comparison for a Multi-Processing Ion Mobility Calculator in the Free Molecular Regime. J. Am. Soc. Mass Spectrom., 28:1540–1551.
  • Sorensen, C. M. (2011). The Mobility of Fractal Aggregates: A Review. Aerosol Sci. Technol., 45(7):765–779.
  • Tekasakul, P., Bentz, J. A., Tompson, R. V., and Loyalka, S. K. (1996). The Spinning Rotor Gauge: Measurements of Viscosity, Velocity Slip Coefficients, and Tangential Momentum Accommodation Coefficients. J. Vac. Sci. Technol. A: Vac. Surf. Films, 14(5):2946–2952.
  • Weiss, R. E., Kapustin, V. N., and Hobbs, P. V. (1992). Chain-Aggregate Aerosols in Smoke from the Kuwait Oil Fires. J. Geophys. Res.: Atmospheres, 97(D13):14527–14531.
  • Williams, M. M. R., and Loyalka, S. K. (1991). Aerosol Science: Theory and Practice: With Special Applications to the Nuclear Industry. Pergamon Press, Oxford.
  • Yamakawa, H. (1970). Transport Properties of Polymer Chains in Dilute Solution: Hydrodynamic Interaction. J. Chem. Phys., 53(1):436–443.
  • Zhang, C., Thajudeen, T., Larriba, C., Schwartzentruber, T. E., and Hogan, C. J., Jr. (2012). Determination of the Scalar Friction Factor for Nonspherical Particles and Aggregates Across the Entire Knudsen Number Range by Direct Simulation Monte Carlo (DSMC). Aerosol Sci. Technol., 46(10):1065–1078.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.